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Kurzfassung

Beeinträchtigungen in der Beweglichkeit von Erwachsenen sind eine der meistverbreiteten
Behinderungen in Industriestaaten. Gangtraining und Physiotherapie werden angewandt
und können dabei helfen, die Beweglichkeit wiederherzustellen, insbesondere nach einem
Schlaganfall. In den letzten Jahren gab es ein reges Interesse an robotergestützter
Therapie, sowohl in Rehazentren, als auch in der wissenschaftlichen Forschung. Mit
dem Aufkommen von Robotik in der Physiotherapie kommt auch die Notwendigkeit, die
Patientenleistung objektiv messen zu können. Therapeuten brauchen kompakt dargestellte
Informationen bezüglich des aktuellen Status des Patienten in der Maschine, sowie
praktische Vorschläge, wie das Gangbild verbessert werden könnte. Mediziner hingegen
verlassen sich auf statistische Messwerte, um den Fortschritt des Patienten im Verlauf
der Therapie beurteilen zu können.

Im Folgenden beschäftigt sich diese Arbeit mit häufig eingesetzten Visualisierungen, sowie
statistischen Kenngrößen in der Ganganalyse. Gleichzeitig werden Verbesserungen und
Anpassungen vorgeschlagen, welche im Rahmen von PerPedes, einem neuartigen Gan-
groboter, umgesetzt wurden. Um die Leistung des Patienten in der Maschine beurteilen
zu können, wurde ein neuer Algorithmus zur Ganganalyse entwickelt, basierend auf der
Auswertung von Kraftdaten. Die nachfolgende Arbeit demonstriert, dass Standardansätze
zur Ganganalyse in PerPedes scheitern, während der entwickelte Vorschlag auch mit stark
verzerrten Gangbildern, wie Halbseitenlähmung, Fußhebeschwäche oder Rückwärtsgehen
umgehen kann. Die während dieser Arbeit entwickelte Software bietet dem Therapeuten
Rückschluss auf die Leistung des Patienten. Die vom System generierten Anweisungen
können benutzt werden, um das Gangbild zu verbessern. Zusätzlich werden von jeder
Therapiesitzung Kennzahlen ermittelt, welche anschließend für die weitere Analyse und
den Vergleich zwischen Patienten genutzt werden können.

vii





Abstract

Mobility impairment in adults is one of most prevalent types of disabilities in developed
countries. Gait rehabilitation can be used to regain some or all motor functions, especially
after a stroke. In recent years, robot-assisted gait training attracted increasing interest in
rehabilitation facilities and scientific research. With this advent of robotic recovery comes
the need to objectively measure the patient’s performance. Physiotherapists need essential
information about the current status during training and how to improve the patient’s
gait, presented in an easy to grasp and compact form. On the other hand, physicians
rely on statistical measures in order to evaluate the patient’s progress throughout the
therapy.

This thesis discusses commonly used visualizations and statistics while proposing improve-
ments and adaptations in the context of PerPedes, a novel robotic gait rehabilitation
device. In order to measure the patient’s performance, a new algorithm for gait event
detection was developed, based on force data from pressure plates. The following work
demonstrates that standard algorithms fail with PerPedes, while the proposed solution
can robustly handle highly distorted gait patterns, such as hemiplegic gait, foot drop,
or walking backwards. The software application developed during this thesis provides
feedback to the therapist and generates suggestions for gait improvement. Furthermore,
gait statistics are inferred from each therapy session and collected in order to be used for
future analysis and inter-patient comparison.
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CHAPTER 1
Introduction

It is estimated that about 15% of the world’s population - this is more than a billion
people - live with some form of disability [Wor11]. In the US alone, mobility impairment
is the most prevalent type of disability, with 13.7% of adults being seriously affected while
walking or climbing stairs [OHCGB18]. In the EU, 14% of people among the working
age population report difficulty in basic activities (such as difficulty in seeing, hearing,
walking or communicating). With walking being the second most reported difficulty after
lifting and carrying [Eur11].

This thesis covers gait rehabilitation with a novel robotic gait training device. Special
focus is put on the analysis of gait as well as visualization as a tool for therapists and
physicians to measure the patient’s activity and progress. The target group is people
with motor impairments in their lower limbs, such as stroke survivors.

1.1 Stroke
Stroke is a cerebrovascular disease that is caused by a restriction in blood flow to parts of
the brain, leading to sudden cell death. Main types are either an ischaemic stroke, which
occurs due to an insufficient blood flow leading to poor oxygen supply, or a hemorrhagic
stroke due to bleeding within the skull. In an analysis for the global burden of disease
(GBD) study 2015, Wang et al. [WNA+16] determined stroke to be the second leading
cause of years of life lost (YLL) due to early dying. According to an analysis for the GBD
study 2016 [VAA+17], ischaemic stroke is ranked seventeenth in the leading causes for
years lived with disability (YLD). This means that stroke is not only one of the diseases
with the highest incidents of death, but also incorporates a high burden in living with
resulting disabilities. Most prevalent post-stroke impairments are paralysis, often on one
side of the body (hemiplegia) and problems related to motor control.
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1. Introduction

Gait post-stroke is characterized by slower gait velocity and gait asymmetry [HB12]. We
focus on gait symmetry throughout this thesis, notably in Sections 2.6, 3.3, and 7.2.

1.2 Gait Rehabilitation
The possibilities for physical therapy poststroke are manifold. Depending on the abilities
of the patient, different therapies can be applied. Balance training, either while sitting
or standing, can be applied. Treadmill training with or without body weight support,
muscle stimulating devices (e.g. transcutaneous electrical nerve stimulation (TENS),
functional electrical stimulation (FES)), water-based exercise, virtual reality mobility
training, or training in groups can be performed to recover mobility loss [VvWvP+14].

However, limitations to conventional therapy apply. Physiotherapists are exposed to
physical strain, lifting the patients, stabilizing their gait, or manually moving their limbs.
There might be more than one therapist required, while training itself is limited both in
duration and intensity. During therapy, the gait pattern cannot be exactly reproduced or
repeated. Robotic mobility rehabilitation could be used to relieve the therapist of some
burden, but also to precisely repeat an optimal motion sequence with the patient.

A possible drawback of automatic rehabilitation devices is the missing feedback for the
therapist of how actively the patient is participating during the training. The patient
might be moved passively by the device while the lack of participation goes unnoticed.
Wagner et al. [WSEG+12] investigated the spectral patterns of electroencephalography
(EEG) to distinguish between active and passive participation in robotic gait trainers.
This could be used to objectively measure the patient’s involvement and help the therapist
intervene accordingly.

1.3 The BrainGait1 Project
In the context of the BrainGait project [For20], a novel rehabilitation system used for
motor recovery is being developed. It is targeted at stroke survivors, patients with spinal
cord injuries, or more generally at people with motor impairments in their lower limbs.
The novelty of the project stems from the combination of a multitude of sensory interfaces
in the context of a gait training robotic device. The project’s main goal is to objectively
measure the patient’s level of participation via EEG and provide visual information to
the therapist or medical practitioner. Further objectives are the measurement of muscle
activities via electromyography (EMG) for automatic detection of spasms, exploration of
FES in the context of robotic training, and the connection to the hospital information
system (HIS) for data exchange.

1BrainGait wird vom Bundesministerium für Verkehr, Innovation und Technologie (bmvit) im Rahmen
des Programms COIN-Netzwerke gefördert. ©2018 SAP SE. Alle Rechte vorbehalten. ©2016. Cerner
Corporation, 2800 Rockcreek Parkway, North Kansas City, Missouri 64117-2551 U.S.A. All rights reserved.
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1.4. Thesis Goals

The project’s partners and their responsibilities are as follows. Project coordinator is
the AIT (Austrian Institute of Technology) GmbH, also responsible for EEG feature
extraction and EMG analysis in corporation with g.tec medical engineering GmbH. The
g.tec company provides EMG and EEG equipment, the software interface to these devices,
and additional expertise. Schepp medtech GmbH develops and provides PerPedes, the
robotic gait rehabilitation device. INFORMATICS Healthcare GmbH with their know-
how in SAP-based systems, provides the interface to the HIS. The company VISUAPPS
GmbH is responsible for visualizations and statistics targeted at the therapist, a visual
feedback system for the patient, and additionally storing patient data to the HIS via the
interface provided by INFORMATICS.

1.4 Thesis Goals
This thesis was created in the course of an employment at the company VISUAPPS.
Initially, the goal was to create visualizations for the therapist, using the available force
data, EMG, and EEG signals. During the progression of the project it became clear
that the EMG does not provide a clear image of the patient’s activity. This is due to
the fact that the muscle activity while training in the robotic gait trainer appears to be
different to gait, as reported in the literature. Furthermore, the application of sensors for
both EMG and EEG is tedious, especially when using gel based EEG electrodes. During
an actual therapy session with the patient, which might only last thirty minutes, there
would be additional time necessary to apply the sensors. Since the EMG signals were
not as clearly interpretable as we hoped for and the setup of the peripheral equipment
would consume too much time in real-life settings, the focus of this thesis shifted to force
data analysis.

The main goal of this thesis is to present status information to the therapist while
the patient is training. This presentation should be concise, use existing visualizations
from standard literature, and help the therapist evaluate the current performance of
the patient. As a secondary objective, the patient’s gait should be analyzed, creating
measures proposed in scientific research in order to document each therapy session and
the patient’s progress.

Since PerPedes is a novel robotic rehabilitation system, at the time of writing, scientific
research for this platform was not yet available. Our experiences with this system
lead to new developments not only in gait analysis, but also in visualization. In this
thesis we provide a novel gait event detection (GED) algorithm, suitable measures, and
visualizations developed for the PerPedes platform. All of which are based on force data.
Our discoveries have potential use outside the PerPedes ecosystem, allowing the study of
severe gait disabilities.

3



1. Introduction

1.5 Development & Implementation
The development framework was already predefined and given. Prototypes, especially
with regards to signal processing (e.g. for GED) have been developed in Matlab R2018a
[The18]. Implementation was then realized as a client/server web application.

The server application is developed with Eclipse Equinox [Ecl20a], an implementation of
the OSGi core framework specifications. The existing server side codebase is structured
into Eclipse plugins, developed in Java and deployed as a web application. It is embedded
in a servlet container, for example Eclipse Jetty [Ecl20b] or Wildfly [Red20] (formerly
known as JBoss application server). Contrarily, the client side is developed in Java
and successively compiled to highly optimized JavaScript using the Google Web Toolkit
(GWT) [Goo20]. The result is cross-browser compatible, including mobile browsers.

Visualizations are created using the HTML5 canvas. This allowed us to create flexible,
fast, and responsive UI elements. Initial attempts of implementing elements based on
scalable vector graphics (SVG) turned out to utilize more of the CPU and were slower to
develop. 3D visualizations were created using the Babylon.js 4.0 framework [CRR20],
since it provides out-of-the-box skeletal animation and is distributed with the permissive
Apache software license. The 3D character (Section 8.5) is based on Adobe’s Mixamo
[Ado20] virtual character and animation service.
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CHAPTER 2
Gait Terminology

2.1 The Gait Cycle
In the following, we describe the human gait cycle during normal walking. The gait cycle
describes a sequence of movements; it starts and ends with two successive events of the
same leg, spanning 100%. In Figure 2.1, the gait cycle starts with the initial contact
of the right leg and ends with the next successive initial contact of the same leg. In
the context of this thesis, we define the gait cycle to start and end with the left initial
contact. This represents the same information as in Figure 2.1, but it is shifted by 50%
of the gait cycle. Since perfect gait is symmetrical, the same movement can be expected
to happen on the left side as on the right side, but offset by half the gait cycle.

Each limb undergoes two major phases; a stance phase, when the limb has contact to
the ground, and a swing phase, when the limb has not. Each stance phase lasts around
60% of the gait cycle, while each swing phase lasts around 40%. During normal walking,
at every point in the gait cycle, at least one side has contact to the ground. Contrarily,
during running this is not the case, since both feet can be in the air at the same time. The
left foot’s stance phase and the right foot’s stance phase are overlapping twice during the
gait cycle. These overlapping phases are called double support, with both feet touching
the ground. Each double support phase is typically approximated to make up 10% of the
gait cycle. During double support, weight is transferred from left to right and vice versa.

5



2. Gait Terminology

Dividing the major phases even further is done either according to traditional (T) or
Rancho Los Amigos (RLA)1 terminology [LN05]. The following RLA subphases are
defined:

1. Loading response - The first double support phase. From initial contact until
the contralateral limb leaves the ground.

2. Midstance - The first portion of single support until the body is directly over the
supporting limb.

3. Terminal stance - The last portion of single support until the contralateral limb
touches the ground.

4. Preswing - The second double support phase until the ipsilateral limb leaves the
ground.

5. Initial swing - The portion of the swing phase until maximum knee flexion of the
swinging leg occurs.

6. Midswing - The next following portion of the swing phase until the tibia of the
swinging leg is in a vertical position.

7. Terminal swing - The last portion of the swing phase before the next initial
contact.

1Rancho Los Amigos National Rehabilitation Center, California, United States

6



2.1.
T
he

G
ait

C
ycle

Figure 2.1: The gait cycle, illustrated. Depicted are the gait cycle’s subphases according to RLA terminologies for the left and
right foot respectively. The right foot’s heel strike starts the right leg’s stance phase (0%− 60%). After the toe off event, the
swing phase (60%− 100%) completes the cycle. All events and phases for the left leg are offset by half a gait cycle (i.e. 50%).
Events, according to RLA are displayed in italic, traditionally defined events as (italic in parentheses), and RLA subphases
are displayed in bold. Image adapted from Levangie and Norkin [LN05].
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2. Gait Terminology

2.2 Gait Events
Gait events refer to specific points in the gait cycle. As with gait cycle subphases, events
are defined either traditionally (T) or according to RLA:

• Initial contact (RLA) or Heel strike (T) - The instant when the foot strikes the
ground.

• Foot flat (T) - Around 7% after initial contact. The first instant when the sole of
the foot contacts the ground.

• Midstance (T) - The instant when the body is directly over the supporting limb.

• Heel off (T) - The instant when the heel leaves the ground.

• Toe off (RLA, T) - The instant when the foot leaves the ground.

The terms heel strike and toe off are somehow misleading, since initial contacts do not
need to happen with the heel nor do last contacts need to happen at the toes. In subjects
with pathological gait, the entire foot or even only the toes may have initial contact with
the ground.

The most important events are initial contact and toe off. These events define the
beginning of the gait cycle, swing, stance, and double support phases. In the literature
these events are named inconsistently. Initial contact (IC) [SFB+05], foot strike (FS)
[BR14], or heel strike (HS) [ZJRH08] all refer to the same event in the gait cycle. Likewise,
foot off (FO) [RCC+08], terminal contact (TC) [SFB+05], final contact (FC) [SBM16],
or toe off (TO) [ZJRH08] identify the instant in the gait cycle where the foot leaves the
ground.

In this thesis we use the terms heel strike (HS) and toe off (TO) to refer to these important
events of the gait cycle. Specifically, events for the left side are referred to as heel strike,
left (HSL) and toe off, left (TOL), while events on the right are heel strike, right (HSR)
and toe off, right (TOR).

2.3 Ground Reaction Force
Whenever a body touches the ground, it exerts a force on the ground and the ground
itself exerts an equal and opposite force on the body (Newton’s third law). While it is
a matter of definition which force is acting and which force is reacting, by convention
the force that the ground is exerting on the body is called the ground reaction force
(GRF). The GRF is typically defined as a three component vector (Figure 2.2), reflecting
the direction and the magnitude of the force. The vertical GRF represents the largest
component of the GRF, with the anterior-posterior (AP) component being approximately
ten times less and the mediolateral (ML) component being approximately one hundredth
of the vertical force [TW10].
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2.3. Ground Reaction Force

This thesis deals exclusively with the vertical GRF component, since no other force can
be measured in the underlying PerPedes system. Therefore, whenever the term GRF is
mentioned throughout the thesis, it is safe to assume that we refer to the vertical force
component.

Figure 2.2: Ground Reaction Force components. Fx denotes the mediolateral, Fy the
anterior-posterior, and Fz the vertical ground reaction force component. Image taken
from Mooney [Moo09].

Figure 2.3a illustrates the vertical GRF throughout the gait cycle for a single leg while
walking. Figure 2.3b shows the interaction of left and right forces. After the heel
strike, the respective vertical GRF rises quickly until the first peak of maximum weight
acceptance (MWA). Displayed force readings are normalized to the subject’s body weight
and might exceed 100%. This occurs because the body’s center of mass (CoM) is moving
downwards (Figure 2.4) before deceleration, resulting in an increased vertical GRF.
During midstance at around 30% of the gait cycle after the heel strike, the CoM is
maximally displaced away from the ground, decreasing the vertical GRF. The second
peak is caused by pushing off the ground, increasing the acting force and therefore the
vertical GRF. Successively, the GRF will fall again while the weight is transferred to the
other leg until the foot’s contact with the ground ends in the toe off event. Generally
speaking, no GRF will occur after the foot is lifted, although Schepp’s PerPedes allows
the measurement of negative forces (Section 4.1). During each weight transfer, one
characteristic is the weight transfer point (WTP), marking the time of equal forces (i.e.
GRFL = GRFR). The WTP can be used to identify weight transfers in the gait cycle,
located between each pair of heel strike and toe off event.
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Figure 2.3: Illustration of vertical GRF for a single leg (a) and the interaction between
both legs (b). Left leg’s GRF depicted in orange, right leg’s GRF in blue. Gait events
marked in green, WTPs (red circles) highlight the points of equal forces. Gray areas
mark the double support phases, dashed lines highlight potentially occurring negative
forces.

Figure 2.4: Vertical displacement of the CoM throughout the gait cycle. Image taken
from Neumann [Neu10].

10



2.4. Center of Pressure

2.4 Center of Pressure
The theoretical single point of application of the GRF is called the center of pressure
(CoP). This point is located somewhere on the sole of the foot if standing on one foot. It
is between the feet, when both are touching the ground. The CoP is typically measured
with a force plate and corresponds to a weighted average between sensor locations and
measured forces.

In clinical applications, when using a pressure sensitive walkway (e.g. with a pressure
sensing mat), the CoP’s trajectory will look similar to Figure 2.5a, depicting one gait
cycle. The gait cycle starts with a HSL, initiating the first double support phase until the
right foot is lifted (TOR). Afterwards, single support on the left foot continues as long
as the right foot is lifted and ends with the HSR event. This starts the second double
support phase and weight shifts from left to right until the left foot is fully lifted (TOL).
The right foot’s single support phase will then last until the left foot contacts the ground
again (HSL), completing the gait cycle.

An alternative to walkways are instrumented treadmills, which can be used in gait
laboratories. These devices consist of a moving belt with force-sensing components
mounted underneath. Plotting the CoP’s trajectory within such a system results in a
butterfly-shaped diagram, also known as gaitogram [RCS+14], or cyclogram [WCH+99]
(Figure 2.5b). This characteristic shape occurs when one foot is being dragged backwards
by the treadmill’s belt during the single support stance phase, leading to the CoP’s
progression top to bottom. The contralateral foot’s HS initiates the double support
phase and quickly moves the CoP forward and to the other side. The weight transfer is
completed with the corresponding TO event and the process continues analogously on the
other side. The analysis of this form of CoP trajectory is called gaitography [RCS+14].

In the context of this thesis, we refer to a gaitogram including the movement of the feet as
dynamic gaitogram. Contrarily, if the feet are assumed non-moving, one can analyze the
CoP’s trajectory between feet as if standing still. This static gaitogram can be created
from insole pressure sensors [WCH+99] where the position of the feet is unknown or by
explicitly removing the respective foot’s position from the dynamic gaitogram. Using a
conventional treadmill setup without the use of external cameras, the position of the feet
is generally unknown and a static gaitogram cannot be inferred. In the PerPedes system,
a static gaitogram can be created by excluding the movement of the pressure plates.

An example for both gaitogram types is given in Figure 2.6. The static gaitogram shows
the interaction between the feet and the pressure along each foot. In healthy gait, the
pressure will move from heel to toe (back to front). At the end of the stance phase, while
the pressure is in the front of the foot in order to use the forefoot to push off the ground,
the contralateral heel strike will occur. In the static gaitogram, this will move the CoP
backwards to the heel of the striking foot. Contrarily, the dynamic gaitogram’s CoP
will move forward, since the striking foot is in front of the other. While the dynamic
gaitogram might be used for gait symmetry analysis, the static gaitogram can provide
information about specific gait patterns (e.g. toe walking).

11



2. Gait Terminology

(a) CoP while walking
(b) Dynamic gaitogram

Figure 2.5: Annotated CoP trajectories during walking on flat ground (a) and within a
moving system like a treadmill (b).

(a) Dynamic (b) Static

Figure 2.6: Gaitogram types. Including each foot’s position (a) or assuming non-moving
(static) feet (b) when computing the CoP.

2.5 Spatiotemporal Gait Variables
In order to describe and measure gait, multiple types of variables have been identified
in biomechanics research [LN05]. These variables can encode temporal information; for
example the amount of time spent in a specific gait cycle phase (e.g. stance time, swing
time). They can also represent spatial information, like distance travelled. Each variable
might be affected by factors unique to an individual subject. Age, sex, body height,
footwear, fitness level, and of course existing disabilities can change certain variable
measurements. As discussed in Section 2.1, the double support phases during walking are
commonly assumed to make up around 10% of the gait cycle, each. This ratio decreases
with faster movements and disappears during running. In contrast, the ratio might
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increase with elderly subjects or people with balance disorders, since weight transfer from
one leg to the other happens more slowly.

In the following, we introduce commonly used spatiotemporal variables. Our system has
been designed to extract these variables from the subject’s gait and we make use of them
throughout this thesis. In order to determine properties of gait, core information about
the gait cycle is necessary. Most relevant data can be extracted, once gait events (HS,
TO) have been identified. The reader is referred to Section 3.2 on how to identify events
in current research. Chapter 6 will discuss detection of gait events in the context of our
system.

Gait events (HS, TO) are temporal variables, since they occur at a specific point in time
within a gait cycle. Recording their respective time of occurrence, the duration of gait
cycle phases can be measured. The stance time is the amount of time spent in the stance
phase. Since the stance phase starts with the corresponding foot’s heel strike and ends
with its toe off event, the stance time is the duration between HS and TO events of the
same limb. Similarly, the swing time can be determined as the duration between TO and
HS event. The time spent during weight transfer is expressed through the two double
support times. Each weight transfer from left to right and vice versa occurs between HS
of one limb and TO of the other extremity.

The gait events are also spatial variables, since they occur at a specific location. This
can be used to derive the step length and the stride length as illustrated in Figure 2.7.
We refer to the step lengths on each side as step length, left (SLL) and step length,
right (SLR), respectively. The step length expresses how far ahead one foot moves in
front of the other one, by measuring the distance between two consecutive and similar
points (e.g. between heels) of both feet. The step length is usually positive, although it
can be zero in case the foot is only brought up beside the other one, or negative when
moving backwards or ‘dragging’ one foot behind the other one. Stride length as the sum
of the left and right step length can be inferred by measuring the distance between two
successive placements of the same foot. We talk about spatiotemporal variables in the
context of our system in Chapter 7.
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Figure 2.7: Illustration of step length and stride length. Step length is measured between
two successive and similar contact points (e.g. the heel) of opposing feet. The right step
length SLR can be measured between the contact point of the right heel strike event HSR
and the contact point of the previous left heel strike event HSL. The left step length SLL
is calculated in an analogous manner. Stride length is determined through SLL + SLR.

2.6 Gait Symmetry
An important aspect in evaluating the performance of subjects with one-sided gait
disabilities, as for example hemiparetic patients after stroke, is to compare left and right
spatiotemporal variables. Measuring symmetry between variables allows the therapist and
attending physician not only to evaluate the current patient’s state, but also the progress
during rehabilitation therapy. In general, symmetry in gait can also be an important
tool in distinguishing healthy from impaired gait. Roerdink and Beek [RB11] state that
a majority of hemiplegic stroke patients show longer paretic steps in comparison to their
nonparetic side. Other studies [HRJ+97], [BBNK07] also demonstrate a longer step
length, longer swing phase, and shorter stance phase with paretic legs in patients with
hemiparesis. Furthermore, Roerdink et al. [RCS+14] examined amputees and showed
the same effect for prosthetic legs. Extracting parameters, like step length and duration
of gait phases, and determining symmetry parameters could therefore be used to measure
existing disabilities and document therapy progress. We talk more about symmetry
measures in the literature in Section 3.3 and in the context of our system in Section 7.2.
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CHAPTER 3
Related Work

3.1 Commercial Solutions for Gait Training/Analysis
Gait analysis in the commercial sector is done with pressure sensing systems, cameras
and markers, inertial motion trackers, or a combination of these. The company CIR
Systems Inc. [CIR20] provides portable, pressure sensitive walkways using pressure
sensing mats within their GAITRite product palette. They state that their products have
been cited more than 5000 times in research publications since 2005. Additionally, they
provide proprietary software to obtain spatiotemporal gait measures, for both clinical
and research applications.

Gait rehabilitation is often done with treadmills or robotic trainers in order to reduce the
workload of the therapist and provide repetitive training scenarios. The complexity of
these systems varies, but typically includes fall protection via support harness. Solutions,
like the Hocoma Andago [Hoc20a] provide a mobile platform for overground gait training.
It follows the patient with two electrically driven wheels while providing stabilization
and fall protection. Contrarily, most offered gait training solutions are stationary and
can range from treadmills (Zebris Rehawalk [Zeb20b], Motek GRAIL [Lin20]) to orthosis-
based (Hocoma Lokomat [Hoc20b]) robotic devices. The company Reha Technology AG
provides the robotic gait trainer G−EO1 [Reh20] to simulate the climbing of stairs. Some
examples of the mentioned gait rehabilitation systems are shown in Figure 3.1. The
interested reader is referred to Morone et al. [MPC+17] for an overview of gait training
on recent robotic platforms.
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(a) Hocoma Lokomat [Hoc20b] (b) Zebris Rehawalk [Zeb20b]

(c) Reha Technology G−EO1 [Reh20]

Figure 3.1: Gait Rehabilitation - Commercial Solutions.

3.2 Gait Event Detection
Gait events (HS, TO) are important points in the gait cycle, which are used to derive
parameters (e.g. step length). The possibilities to detect events are manifold and depend
not only on the used equipment but also on the processing of the recorded data. We
distinguish between two physical ways to analyze gait events, i.e. kinematic and kinetic
approaches. Kinetics, as part of classical mechanics, is concerned with the study of
motion and its causing forces or moments (torques). Kinematics on the other hand
describes motion without taking the causing forces into account. In biomechanics, this is
done by analyzing the motion of the human skeleton or parts of the body (e.g. limbs,
joints). This motion, expressed through displacement, accelerations, velocities, or angular
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quantities, can be measured directly (e.g. with an inertial measurement unit (IMU)) or
indirectly (e.g. with camera tracking and reflective markers).

Roerdink et al. [RCS+14] detect gait events from the CoP’s trajectory by identifying
minima and maxima in the gaitogram’s AP component as HS and TO, respectively.
Van der Veen et al. [vdVHBH18] compares two marker-based kinematic methods to
the previously mentioned CoP-based kinetic method [RCS+14] used as a gold standard.
The first marker-based method M1, as defined in previous studies [RCC+08], [PBvD04]
detects HS as a minimum in the vertical displacement and TO as a local maximum in
the vertical velocity, both referring to a heel marker. The second method M2 [ZJRH08]
defines HS as the maximum anterior displacement of the heel marker and TO as the
instant when the forward velocity of the toe marker crosses zero. They compare data
from both stroke patients and healthy subjects and determined method M1 might not
be considered reliable for stroke patients, while M2 might detect events too early. They
conclude that GED, based on the CoP’s trajectory may be more appropriate with stroke
patients. At the same time, it is pointed out that CoP-based methods might not work
with severely affected gait and non-butterfly shaped gaitograms.

Mansfield and Lyons [ML03] compare GED with a footswitch to accelerometer-based
detection, attached to the lower spine. They argue that for people with an initial
contact not performed with the heel, such as hemiplegic patients with foot drop, the
accelerometer-based method might be a favorable choice. On the other hand, Hanlon and
Anderson [HA09] demonstrate in their study of healthy participants that footswitch-based
GED show significantly lower errors than their accelerometer-based method.

Pappas et al. [PPK+01] combine a gyroscope attached to the heel with force sensitive
resistors in the shoe sole for GED. While the HS event is detected when any of the
resistors is pressed, the TO event is based on the heel being lifted and simultaneously
exceeding an angular threshold, measured through the gyroscope. Another approach
[HHH+13] uses a shank-mounted gyroscope to determine initiation and termination of a
forward swing. These instants indicate the shank’s change in angular direction and are
closely related to gait events. Recent work in GED investigates the use of smartphones
[PVS17] instead of dedicated IMUs, as well as neural networks [Mil09], [KDS19] as an
alternative to signal processing.

3.2.1 Threshold-based Methods

In their recent work, Benson et al. [BCW+19] state that the use of thresholds with
GRF data from force plates is considered the gold standard for GED. Rueterbories et
al. [RSLA10] also highlight that force-based event detection, either with force plates or
sensors attached to the feet, is still used as a reference to validate against.

While threshold-based methods are very common in event detection, there appears to be
no agreement on the choice of threshold or on the force component to use. The literature
describes thresholds on the vertical GRF of 10 N [GSDE04], [HM00] and 20 N [SFB+05].
Alternatively, thresholds on the total amount of GRF of 2.5 N [WC96], 5 N [HA09], or
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6.5% of the body weight [ZH03] are reported. Furthermore, Hesse et al. [HRJ+97] detect
HS events when the AP force component exceeds 5 N.

In general, threshold-based GED are not applicable in scenarios where early contacts
are not indicating a heel strike event. This is the case with gait abnormalities such as
shuffling gait, where subjects are dragging their feet as they walk (e.g. with Parkinson’s
disease). Similarly, these methods are not applicable in our system, since exceeding a
force threshold does not indicate a weight transfer. This is discussed in Section 6.4.

3.2.2 Total Vertical Ground Reaction Force

Mawase et al. [MHBHK13] demonstrate in their work the relation between the total
amount of vertical ground reaction forces (sum of left and right forces) and gait events
(Figure 3.2). They observe maxima in the double support phases and minima during
single support. Heel strikes are located at a local minimum, preceding strong peaks in the
total vertical force. Following this maximum peak, toe off events are located immediately
after the next local minimum. Controversially, Roerdink et al. [RCC+08] locate toe
off events exactly at this local minimum. We examine the possibility of using the total
vertical GRF in our system in Section 6.4.3.
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3.2. Gait Event Detection

(a) Images taken from Mawase et al. [MHBHK13].

(b) Image taken from Roerdink et al. [RCC+08].

Figure 3.2: Total vertical ground reaction forces and gait events. This example shows
important points in the gait cycle and in the (dynamic) gaitogram. Abbreviations: LIC
(left initial contact), RTO (right toe off), RMIS (right midstance), RIC (right initial
contact), LTO (left toe off), LMIS (left midstance), and FO (foot off). 19
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3.2.3 Continuous Wavelet Transform

In recent years, the continuous wavelet transform (CWT) has seen an increased application
in biosignal processing [AWG09] and in gait analysis to explore the time-frequency
relationship between gait event and gait cycle [KW16]. In contrast to the Fourier
transform (FT), the CWT offers a time-frequency representation of a signal that is both
very well localized in frequency and time. Another distinctive feature of the CWT over
the FT is the use of basis functions other than sinusoidal (sine, cosine) curves. The
CWT’s basis functions are scaled and shifted versions of one mother wavelet. Different
mother wavelets are commonly used in gait analysis, among them the Morlet [KW16]
and the derivative of Gaussian (DoG) [MDGM12] wavelets.

As an example, the Gaussian function, centered at zero with standard deviation σ and
its corresponding first order derivative can be written as:

G(x) = 1
σ
√

2π
exp(− x2

2σ2 ) (3.1)

dG(x)
dx = − x

σ2 ·G(x) (3.2)

Illustrations of both functions can be seen in Figure 3.3.
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Figure 3.3: Gaussian (solid red line) and its first order derivative (dashed blue line) with
σ = 1. The corresponding Matlab code can be found in Appendix A.2.
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CWT - A Buzzword?

Definition of buzzword: An
important-sounding usually
technical word or phrase often of
little meaning used chiefly to
impress laymen.

Merriam Webster dictionary
[Mer19]

The goal of the CWT is to provide a tool for time-frequency analysis in the context of
gait event detection. While promising, current publications suggest that the method can
be misunderstood and its applicability might be overrated. The following section demon-
strates that a simple Gaussian smoothing operation can replace a complex arrangement
of steps incorporating the CWT.

The influential paper “An enhanced estimate of initial contact and final contact instants
of time using lower trunk inertial sensor data” by McCamley et al. [MDGM12] uses
CWT in the context of GED. As of April 2020, it has been cited more than 100 times,
as well as re-implemented and evaluated repeatedly [TRHC15], [SBM16], [DDGR15],
[FOL19]. Their method (MCW T ) analyzes a vertical acceleration signal, acquired from a
single IMU, positioned at the lower spine. They propose to integrate the acceleration
signal, followed by a differentiation step using a CWT with a first order DoG wavelet.
HS events are then located at the minima of the resulting signal, while TO events are to
be found at the maxima of the signal obtained after another CWT differentiation step.

Remarkably, three different publications, Storm et al. [SBM16], Trojaniello et al.
[TRHC15], and Trojaniello et al. [TCDC14] allegedly evaluate the MCW T method,
but make no mention of the first integration step. Din et al. [DDGR15] and Flood et al.
[FOL19] report the necessary integration step before applying the CWT.

In order to evaluate the MCW T method, the first step was to reproduce the results
reported by McCamley et al. Since the authors did not provide the underlying accel-
eration data, we decided on manually sampling their result figure’s acceleration graph.
The vertical acceleration function was then reconstructed from the sample points with
a cubic spline interpolation (Matlab: spline) at a 5 ms resolution in time, since the
original function had a 10 ms temporal resolution. Subsequently, the vertical accel-
eration was integrated (Matlab: cumsum) and differentiated with the CWT (Matlab:
derivative_cwt [Luo07]). The minima of this signal correspond to heel strikes, while
another CWT differentiation reveals a signal whose maxima correspond to the TO events.

Both signals resembled the reported results (Figure 3.4), although they could not be
accurately reproduced, since the scaling parameter for the CWT was not reported by
McCamley et al., nor by any other publication. Additionally, since the acceleration
signal was sampled from an image, the data beyond the image’s boundaries is unknown,
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resulting in discrepancies near the border. Experimentally, we could establish a scaling
parameter of around 15, used for the acceleration data with a sampling rate of 10 ms.

Since it is now established that an integration step is indeed necessary, we evaluate
why the authors suggest to integrate and then differentiate again and for which purpose
the CWT is used. Nie et al. [NWL+02] demonstrate that the CWT can be used to
calculate the approximate derivative of a signal. They use the nth order derivative of
Gaussian function as a wavelet with a CWT to calculate the nth order derivative of
the signal, smoothed by a (scaled) Gaussian function. This possibility to approximate
a derivative using the CWT is also reported by Luo et al. [LBS06], who provide the
derivative_cwt Matlab function, as well as by Shao and Ma [SM03]. Both are cited
in the work of McCamley et al. [MDGM12].

The CWT with a first order DoG wavelet is an approximate derivative with additional
smoothing. Since the MCW T method integrates the acceleration signal and subsequently
uses the CWT, the result is a smoothed version of the original signal. The process can
therefore be substituted by merely using an appropriately sized Gaussian to smooth the
acceleration data. We provide a visual comparison between integration, followed by a
CWT in contrast to a simple smoothing in Figure 3.5. The signal beyond the boundaries
at times t = 0 and t = 2 is assumed constant and equal to the mean signal value. The
normalized Gaussian kernel used for smoothing is appropriately scaled in time to the
signal’s domain t ∈ [0, 2]. Note that the Gaussian kernel in Figure 3.5 is for illustrative
purposes, correctly showing the extent in the time domain, but its amplitude does not
match the acceleration signal’s domain. The corresponding Matlab code used to generate
Figures 3.4 and 3.5 can be found in Appendix A.1.

In summary, our findings show that McCamley et al.’s method can be simplified to using
a Gaussian smoothing kernel on the acceleration signal A to create a smoothed version
As. Followed by a conventional numerical differentiation step and an additional Gaussian
smoothing, we arrive at signal Ds. HS events are then located at the minima of As, while
TO events are located at the maxima of Ds. These maxima approximately correspond
to the inflection points of As and are positioned roughly halfway between minima and
maxima of As. The publication [MDGM12] does not mention why those inflection points
should represent TO events.

Trojaniello et al. [TRHC15] report significantly larger errors when applying the MCW T

method to subjects with pathological gait. Din et al. [DDGR15] initially find that
the MCW T method generates spurious HS events in 37% of healthy participants and
58% of patients with Parkinson’s disease. As a consequence, they decide to refine the
method before comparing it to other selected algorithms. Storm et al. [SBM16] evaluate
MCW T and another method. They conclude that event timings cannot be reproduced as
accurately as reported in the MCW T method’s original paper. For outdoor free walking
MCW T performs worse than the compared method with a shank-mounted IMU. In
conclusion, even results from well-received and cited papers have to be reflected on and
checked for applicability and reproducibility in a given situation.
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(a) Image taken from McCamley et al. [MDGM12], Fig. 1.
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(b) Our reproduction of the results.

Figure 3.4: Verification of the MCW T method. The measured vertical acceleration (solid
line) is first integrated and subsequently a CWT is applied, resulting in a smoothed
acceleration (dashed line). Applying another CWT results in a smoothed jerk (dotted
line). The minima of the smoothed acceleration correspond to HS (◦) events, while the
maxima of the smoothed jerk represent TO (×) events.
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Figure 3.5: Comparing the MCW T method to smoothing. The vertical acceleration
(solid red line) is integrated and transformed through a CWT, resulting in a smoothed
acceleration (dashed blue line). Smoothing the acceleration with an appropriately sized
Gaussian kernel (solid black line) results in a nearly identical signal (dotted green line).

3.2.4 Correlation between GRF and Acceleration

Multiple studies analyze the relation between ground reaction forces and accelerometer
data. Elvin et al. [EEA07] show a strong and significant correlation between peak GRF
and peak tibial accelerations during jumping. Neugebauer et al. [NHB12] estimate peak
vertical GRF from hip accelerations and provided a mixed model regression equation.
Fortune et al. [FMK14] use ankle, waist, tibia, and thigh positioned accelerometers
to estimate peak (vertical) GRF and peak (vertical) loading rate. They provide linear
regression equations from which those quantities can be inferred. Ankle and waist
worn accelerometers show the most accurate estimates. Rowland and Stiles [RS12]
demonstrate that acceleration correlates with GRF in accelerometers worn at the wrist
and the hip. Pouliot-Laforte et al. [PLVRL14] show that accelerometry could be a
valid tool to estimate the vertical GRF for healthy children as well as children with
osteogenesis imperfecta type I, a genetic disorder affecting the bones. The accelerometer
was positioned at the waist and different tests were carried out to reflect everyday life
settings in children.

Initially, we were investigating the possibility to apply acceleration-based GED algorithms
in the context of our system, because of the correlation between GRF and acceleration.
The literature suggests that there could be a correlation between tibia-based accelerations
and vertical GRF of one foot, as well as waist-based accelerations and the total amount
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of vertical GRF. Gait in PerPedes (Chapter 4) restricts free movement and there are
no evaluations available if the correlation holds in this case, and if so, which regression
model is valid in the context of our system. Additionally, converting GRF to acceleration
data will likely introduce additional imprecision. Therefore, we decided against using
acceleration-based methods for GED and use kinetic methods, based on the force data
instead.

3.3 Symmetry Measures
An important aspect in evaluating the patient’s performance and document the therapy’s
progress is the acquisition of gait symmetry indicators. According to Patterson et al.
[PGB+10], there exists no accepted standard for assessing symmetry in gait. According
to Blazkiewicz et al. [BWW14], the symmetry index (SI) is the most commonly used
and cited measure in publications on gait symmetry. The literature commonly proposes
two kinds of symmetry measures. The first kind deals with comparing spatiotemporal
parameters between the patient’s left and right side. The second group of symmetry
measurements is inferred from the gaitogram’s graphical representation.

3.3.1 Symmetry from Spatiotemporal Parameters

Publications (see caption in Table 3.1) propose multiple symmetry measures, commonly
used in evaluating gait symmetry. Symmetry measures quantify the correlation between
values of the left VL and right side VR of the body. In patients with partial paralysis, it
can be used to compare the performance of the paretic side to the non-paretic side, in
other words, comparing the impaired to the healthy side.

Given strictly positive spatiotemporal parameters VL and VR, different symmetry measures
are proposed in publications on gait symmetry. The most common symmetry measures
are summarized in Table 3.1. Each measure’s value is zero if VL = VR, positive if VR > VL,
and otherwise negative. While SR, SA, and GA just compare the ratio between both
values and apply different scaling, SI compares the difference to the average of both
values. GA is ambiguously defined in the literature; with and without absolute value
| ln(·)|. For consistency, the GA’s range of values is centered at zero, therefore no absolute
value is used. Patterson et al. [PGB+10] provide an evaluation of all symmetry measures.
They also propose the symmetry ratio SR to represent the fraction between the smaller
and the larger value while indicating the direction of symmetry with a sign convention.

The given formulas are only applicable if both values VL, VR are positive, but can be
extended as follows. If both quantities are negative, symmetry can be measured between
the new parameters V ′L = −VR and V ′R = −VL. This will lead to a positive value if
|VR| > |VL|. Furthermore, if both quantities are zero (VR = VL = 0), a symmetry measure
can be defined as zero (i.e. symmetric). If one quantity is positive and the other negative,
the given measures are not applicable. The range of SR is either exceeded or its value is
undefined if max(VL, VR) = 0. Similarly, the range of SI is either exceeded or its value is
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3. Related Work

undefined if VR + VL = 0. For SA and GA, the symmetry cannot be determined, since
−VR
VL

= VR
−VL

.

In their work, Patterson et al. [PGB+10] specified the spatiotemporal parameters step
length, swing time, and stance time to be most useful in the context of gait symmetry
with stroke patients. Since swing time and stance time are strictly positive values, the
measures can be applied as is. Step lengths could potentially be negative (e.g. walking
backwards), therefore the symmetry measures are valid with the proposed adaptations.

Symmetry Measure Equation Range

Symmetry Ratio (SR) 100% · sgn(VR − VL) · (1− min(VL, VR)
max(VL, VR)) [−100%, 100%]

Symmetry Index (SI) 100% · VR − VL

0.5(VR + VL) [−200%, 200%]

Symmetry Angle (SA) 100% · (45°− atan(VL

VR
))/90° [−50%, 50%]

Gait Asymmetry (GA) 100% · ln(VR

VL
) (−∞%,∞%)

Table 3.1: Commonly used symmetry measures. Symmetry ratio [PGB+10], [LBAN14],
symmetry index and symmetry angle [PGB+10],[Pat10],[HB12],[BWW14],[LBAN14], as
well as gait asymmetry [PGB+10],[Pat10],[HB12],[BWW14].

3.3.2 Symmetry in the Gaitogram

The analysis of the CoP’s trajectory throughout one or more gait cycles has been the
topic of research in multiple publications. The so called gaitography is applied in different
studies, dealing with gait disabilities. It is applied in gait pattern analysis for prosthetic
walking [RCS+14], toe walking [KYB16], multiple sclerosis [KF15], [KDFA13], and with
hemiplegic stroke patients [WPH+04].

The Zebris FDM-T evaluation software [Zeb20a] (Zebris Medical GmbH), a commercial
solution for gait analysis, automatically creates gaitogram visualizations and derives
analytic parameters from the patient’s CoP trajectory. A gait report [Tol17] can then be
generated per therapy session.

Gait analysis [KF15], [KDFA13] introduces three symmetry parameters, derived from
the patient’s gaitogram (Section 2.4). We discuss these parameters in the context of our
system in Section 7.2.

26



CHAPTER 4
Schepp’s PerPedes

Figure 4.1: Schepp Medtech’s PerPedes [Med15]. Robotic gait rehabilitation with plantar
flexion and dorsiflexion support. The system provides vertical GRF readings for both
feet. Since the subject’s feet are strapped in (red frame), negative forces can potentially
occur. Images taken from the manufacturer [Med15] and the SFG [Ste17].
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4. Schepp’s PerPedes

4.1 Overview
Schepp Medtech GmbH [Med15], as one of the partners in the BrainGait project (Sec-
tion 1.3), provides the robotic gait rehabilitation device, named PerPedes (Figure 4.1).
The device can be used to emulate a natural walking motion with plantar flexion (PF)
and dorsiflexion (DF) support. PF and DF refer to the angle between foot and tibia
(Figure 4.2a). Rotating the foot around the ankle downwards increases the angle between
foot and leg; the ankle is in plantar flexion. Decreasing the angle and therefore bringing
the toes closer to the tibia leads to dorsiflexion. Over the course of a gait cycle, this
angle naturally changes (Figure 4.2b). During a heel strike, the ankle is in neutral DF.
After heel strike, the fast transition to a flat foot leads to an increased PF during the
loading response subphase. While the body’s CoM moves in front of the weight-bearing
foot during the stance phase, the dorsiflexion angle increases to around 10°. During
push-off, the ankle switches to PF; it subsequently reaches an angle of around −20°. The
foot’s ankle then returns to neutral DF during the swing phase. The PerPedes platform
supports the PF at the end of the stance phase by raising the subject’s heel. Furthermore,
to assure neutral DF during heel strike, the forefoot is automatically lifted.

PerPedes consists of two moving plates with each plate containing six weight (pressure)
sensors (Figure 4.3). The used sensors are not multi-axis force sensors, therefore only
vertical ground reaction forces can be determined. Since the subject’s feet are held down
with foot straps on top of the plates, it is also possible to measure negative forces if
a foot is lifted and pulls on the foot straps. The small number of sensors can be used
to determine the average pressure location on each plate (Section 5.4), but lacks the
capabilities of a full pressure sensor matrix with hundreds or even thousands of pressure
readings used in pedobarography [SMS+14].

For safety, the subject wears a harness, which allows part of the subject’s weight to be
carried by a weight support system. The amount of weight support, between 0% and
100% of the subject’s body weight, can be adjusted via Schepp’s tablet software. This
weight lifting system also allows the reproduction of the subject’s natural torso movement
in the vertical direction during therapy. Furthermore, support of the horizontal movement
of the pelvis can be activated in order to simulate natural walking. The overall sense of
personal safety is increased by the provided handrails for individual stabilization.

The step length can be adjusted separately for each pressure plate, ranging from 270 to
620 mm. The step width is adjustable with two possible positions in ML direction on
each plate, resulting in a 90 or 190 mm spacing between the midlines of the feet. The
maximum cadence is 94 steps per minute. Using the maximum step length of 620 mm,
this results in a maximum walking speed of around 3.5 km/h1. The machine’s movements
are either at a fixed speed or user-controlled by “pulling” the pressure plates.

The PerPedes platform provides data readings, configurable between 2 Hz (every 500
ms) and 50 Hz (every 20 ms). The most important data in our context are the pressure

194 steps/min · 620 mm/step = 58, 280 mm/min = 3.4968 km/h

28



4.1. Overview

sensors’ readings, pressure plate positions, support load, and therapy speed.

(a)
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Figure 4.2: PF and DF of the human foot (a) and throughout the gait cycle (b). Figure
(a) taken from Connexions [Con13]. Figure (b) adapted from Perry [Per08].
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Figure 4.3: PerPedes’ pressure plate setup. Each pressure plate has six pressure sensors
(black dots), the coordinate origin is marked with a red cross, and dimensions are in
millimeter. Each pressure plate consists of two connected sections (front and back).
The subject’s metatarsophalangeal (MTP) joints of each foot are placed between both
sections. Right image taken from Pearl [Pea19].
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4. Schepp’s PerPedes

4.2 Plate Movement
The pressure plates’ movement defines the machine’s gait cycle. Each plate is positioned
at a maximum frontal position when reaching its preset step length, i.e. the moment of
optimal heel strike. It is positioned furthest back around the optimal toe off instant. The
plate’s backwards movement (during stance) is slightly slower than its forward movement,
reflecting the optimal 60:40 ratio of stance and swing phase in the gait cycle. This leads
to an asymmetrical movement of both plates throughout the gait cycle (Figure 4.4).
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Figure 4.4: PerPedes’ plate movement throughout its gait cycle. The most frontal position
(i.e. 100% of the machine’s step length) of the plates is reached at 0% and 50% of the
gait cycle, while the plates are positioned farthest back at around 57% and 7% of the gait
cycle for the left and right plate, respectively. They are positioned next to each other at
around 28% and 78%.
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CHAPTER 5
Data Recording and

Preprocessing

5.1 Resampling
Force plate data readings in Schepp’s PerPedes device are provided per default at a
frequency of 10 Hz (every 100 ms), but could potentially be read at up to 50 Hz (every
20 ms). The number of measurements per gait cycle depends on the machine’s therapy
speed, expressed in steps per minute. Studies [TLR+07], [TMR97] have shown that the
mean cadence of post-stroke patients can range from 50 to 63 steps per minute. Therefore,
a gait cycle consisting of two steps might take between 1.9 and 2.4 seconds on average.
With 10 samples per seconds, this results in 19 to 24 force plate measurements per gait
cycle. Test data recorded for our analysis used a cadence of 40 steps per minute, therefore
each gait cycle took 3 seconds with 30 measurements. For further data processing, our
system employs a resampling strategy of the pressure plates’ readings. Every gait cycle
is sampled at uniformly distributed (equally spaced) sample points. According to the
Nyquist-Shannon sampling theorem [Sha49], the points for resampling should be more
than twice as many as the underlying original data, therefore ranging from 39 to 49
points for the average stroke patient. Since movement in our test data was even slower
with 30 readings per gait cycle, the resampling needs to be done with more than 60
sample points. Our system divides each gait cycle into 59 equally sized intervals, i.e.
60 sample points, with each around 1.6% of the gait cycle apart. While an optimal
sampling strategy would require one additional sample point for very slow movements, it
is sufficient for the average walking speed of a post-stroke patient in combination with
the default 10 Hz data transfer rate. Sampling the data of each gait cycle at the same
points in time (e.g. at every 40% of each gait cycle) allows the calculation of statistical
measures (e.g. mean, variance) over multiple gait cycles for these points in time. In the
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5. Data Recording and Preprocessing

context of force readings, this allows the visualization of mean and standard deviation
over the past N gait cycles alongside the currently measured data (see Section 8.3).

5.2 Body Weight Estimation
Ground reaction force measurements are commonly normalized with respect to the
subject’s body weight. The PerPedes system allows the operator (e.g. therapist) to
manually enter the subject’s body weight. In case the weight is specified, this value
is used for normalization. However, in most cases, a pre-determined body weight is
not entered and therefore unavailable. Nevertheless, the PerPedes platform provides
various sensory inputs, which can be used to estimate the body weight, while improving
precision over time. In a typical gait training scenario, the subject is wearing a harness
and is suspended from the top of the PerPedes machine. This provides stability and fall
protection for the subject while simultaneously reducing load on the subject’s legs. If
the subject is standing still without holding onto the handrails, the body weight is equal
to the sum of the measured load at both pressure plates plus the support load, carried
by the suspension system. In general, if the subject is moving, the measured load will
vary and underlying acceleration forces will cause the sum of loads to fluctuate above or
below the actual body weight. With the assumption that acceleration and deceleration
forces throughout a gait training session cancel each other out, we can calculate the body
weight as the mean of the measured loads over N samples:

WB = 1
N

N∑
i=1

(WL(i) +WR(i) +WS(i)) (5.1)

With WL and WR denoting the weight measured at the left and right pressure plate
respectively. The support loadWS measures how much weight is carried by the suspension
system. The mean body weight WB is continuously updated in an online fashion [Wel62],
increasing precision over time.

If the subject is using the handrails to support part of his or her body weight, the
estimate will deviate from the ground truth by this support factor. Since the utilization
of handrails is an important factor for the personal feeling of safety, this deviation cannot
be avoided unless subjects are explicitly instructed to avoid using them. Keeping this in
mind, the body weight estimate is primarily used for visualization and scaling of ground
reaction forces. A deviation of the estimate from the ground truth does not influence the
system’s results.

5.3 Vertical Ground Reaction Force
The vertical ground reaction force is equal to the measured weight at the respective
pressure plate, normalized by the (estimated) body weight and expressed in percent:

GRF{L,R} = 100%
WB

·W{L,R} (5.2)
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5.4. Locations of Pressure

The vertical ground reaction force is therefore equal to the measured weight, scaled by a
constant factor.

5.4 Locations of Pressure
The PerPedes system consists of two pressure plates with each plate having six pressure
sensors built in (Figure 4.3). Each sensor’s position SP{1,..,6}

{L,R} is known and fixed. SP is
a two-component vector with its first component referring to the ML axis (left to right)
with negative values to the left and positive values to the right. The second component
refers to the inverted AP axis (back to front) with negative values to the back and positive
values to the front.

Each pressure sensor continuously reports its measured weight SW {1,..,6}
{L,R} , which is either

positive (pushing down) or negative if the respective foot is lifted and pulls on the foot
straps. Using the sensor locations and their respective weights, we determine the pressure
point for each pressure plate and the center of pressure between both plates.

5.4.1 Pressure Point

The pressure point refers to the location of average pressure applied at each pressure
plate. The pressure point P{L,R} is the weighted sum over all sensor positions of the
respective pressure plate:

PL = 1
W+

L

6∑
i=1

max(0,SW i
L) · SPi

L

PR = 1
W+

R

6∑
i=1

max(0,SW i
R) · SPi

R

(5.3)

With W+
{L,R} being the total amount of positive weight measured at each pressure plate.

This corresponds to the sum of positive forces over the pressure plate’s sensors:

W+
L =

6∑
j=1

max(0,SW j
L)

W+
R =

6∑
j=1

max(0,SW j
R)

(5.4)

With SW j
{L,R} being the measured weight at sensor j for the left or right plate, respectively.

In case W+
{L,R} is near zero, substitute coordinates are used for the respective pressure

point P{L,R}. These coordinates correspond to a fixed location, reflecting the approximate
center of each foot.
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5.4.2 Center of Pressure

The center of pressure is the weighted average between left and right pressure point. We
distinguish between a static center of pressure CoPs and a dynamic center of pressure
CoPd. The CoPs assumes a static frame of reference with fixed non-moving pressure
plates, positioned next to each other. Contrarily, the CoPd incorporates the movement
of the pressure plates. Each center of pressure can be inferred from:

CoPs = PL ·W+
L + PR ·W+

R

W+
L +W+

R

(5.5)

CoPd = (PL +DL) ·W+
L + (PR +DR) ·W+

R

W+
L +W+

R

(5.6)

With D{L,R} =
[
0 dAP

]
{L,R}

describing the displacement in AP direction of the corre-
sponding force plate with respect to the system’s origin.

Note that only positive weights can be taken into account when dealing with locations.
Incorporating negative weights would result in locations outside the convex hull of sensor
positions, possibly even beyond the pressure plates’ bounds. In case both weights are
zero (i.e. WL = WR = 0), the mean between both pressure points is used:

CoPs = 0.5PL + 0.5PR (5.7)
CoPd = 0.5(PL +DL) + 0.5(PR +DR) (5.8)

Test data has demonstrated another possible case, where both legs are lifted (i.e. WL <
0,WR < 0) while the subject is being held in the support gear. In these rare cases, in
order to have a meaningful center of pressure, it is calculated as follows:

CoPs = PL ·WR + PR ·WL

WL +WR
(5.9)

The weights are exchanged, since the pressure point with the larger weight should have
more influence in the center of pressure calculation, as is shown in the following example:

WL = −20,WR = −10,WL +WR = −30 (5.10)

CoPs = −10PL − 20PR

−30 = 1
3PL + 2

3PR (5.11)

Since the weights are also positive, the result will be between the points PL and PR and
stays within the convex hull of sensor positions. The CoPd is calculated analogously.
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CHAPTER 6
Gait Event Detection

This chapter introduces a novel algorithm to detect gait events (heel strike, toe off) in
the context of the PerPedes system and represents one of the main contributions of
this thesis. Due to the distinctive features of the platform (Section 4.1), standard GED
algorithms cannot be applied. We start with extending the notion of heel strike and toe
off to a definition more suitable in PerPedes (Section 6.1). Section 6.2 then explains the
difference between the machine’s gait cycle and the subject’s gait cycle and the possible
offset between both. Before finding gait events, first a weight transfer is identified or
rather its center (Section 6.3). Using this center as a reference point, search boundaries
for gait events can be established (Section 6.4.2). Subsequently, these boundaries can be
used to search for gait events. We discuss different approaches and explain why they are
not applicable in PerPedes (Section 6.4.3).

With this collected knowledge about gait in PerPedes, we introduce different representa-
tions of force data (Section 6.5.1) and subsequently formulate the gait event detection
algorithm (Section 6.5.2). Finally, this chapter also describes how to validate (Sec-
tion 6.5.3) the newly defined gait events.

6.1 Introduction
The classic definition of heel strike (or initial contact) and toe off (or last contact) known
from standard literature does not apply in the context of the PerPedes system. Here,
the feet are strapped down, leading to inadvertent ground contacts and incomplete foot
lifting. The initial contact does not give reasonable answers to how a subject behaves in
Schepp’s PerPedes. It has lost its meaning, since there might be a permanent contact
with the force plates. Furthermore, the pressure plate of the striking foot might move
forward after initial contact, moving the feet further apart and resembling the notion
of a slippery floor. Additionally, the subject can hold onto the handrails or have a
portion of the body weight carried by the support harness. All these factors combined
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6. Gait Event Detection

contribute to the difficulty of finding gait events. Since statistical measures (e.g. step
length, stance/swing time) depend on gait events, it is necessary to find points in the
gait cycle closely related to the original definition with the given restrictions in mind.

Essentially, the heel strike defines the start of a weight transfer, while toe off marks
its completion. Adhering to this concept of gait events, GED in PerPedes is done by
identifying the subject’s intention of initiating and completing a weight transfer. Since
the subject’s intention is rather abstract, it is important to provide a characterization of
a weight transfer itself. Generally speaking, a weight transfer in normal gait happens
quickly, i.e. forces between left and right side are exchanged during a short time interval.
The transfer should progress continuously (from left to right or vice versa) without a
significant change in direction. The start of a weight transfer should be accompanied by
an increase in “effort” of the subject to switch sides. This effort should be detectable
through a change in the force distribution between left and right foot.

In PerPedes, weight transfers often are not complete, meaning the swinging foot is not
fully lifted and exerts force during the contralateral foot’s stance phase. Since the system
is used as a medical platform, potentially used by patients with severe disabilities, gait
events need to be detected even under severe conditions. Test data has shown that even
healthy subjects show a tendency to incomplete lifting (Chapter 9). The developed GED
algorithm attempts to deal with unusual gait patterns and behavior and determines when
weight transfers are performed.

In general, heel strike and toe off events have very similar, but inverse characteristics.
Heel strikes should correspond to a point in time before a WTP (Section 2.3), initiating
a weight transfer, preferably matching an initial contact with the ground. Toe offs occur
after a WTP, completing a weight transfer, preferably ending with the last contact of the
foot. Heel strike and toe off are symmetrical ±5% GC 1 around a WTP in an optimal
scenario (Figure 2.3b). While a HS starts a weight transfer and subsequently shows an
increase in the GRF of the striking foot, the TO ends a weight transfer with a preceding
decrease in the GRF of the lifting foot. Toe off events can be viewed as time-reversed
heel strikes while simultaneously negating AP coordinates (switching front and back).
Similarly, a heel strike on the left side can be treated exactly like a heel strike on the right
side, except negating all ML coordinates (switching left and right). Treating heel strikes
and toe offs equally, but opposite to each other, is done in the literature in the context of
gaitography [TCvDR19], [RCC+08] and threshold-based methods [HM00]. Without loss
of generality, the following sections portray GED from the (right) heel strike perspective.

6.2 The Gait Cycle (Human vs. Machine)
In the following, we distinguish between the machine’s gait cycle and the human subject’s
gait cycle. The machine’s gait cycle is defined mechanically by its moving parts. Schepp’s

1X% GC is the short form for “X percent of the machine’s gait cycle (GC)”. It either refers to an
absolute point in time of the gait cycle (e.g. at 5% GC) or acts as a relative time offset (e.g. 5% GC
before a HS).
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6.2. The Gait Cycle (Human vs. Machine)

PerPedes system is built in order to simulate a complete human gait cycle, therefore
gait events are clearly defined at specific positions of its moving plates. For example,
the foot’s initial contact should optimally coincide with the pressure plate being in its
foremost position, while the TO event should occur when the plate is furthest back.
These well-defined optimal points in time define the machine’s gait events (Figure 4.4).
The subject’s gait events can deviate from the machine’s optimal gait events, but in
general this deviation is expected to be within certain bounds. In the following, we define
these bounds, i.e. the maximum possible deviation of a subject’s gait event from the
corresponding machine’s gait event.

First, we evaluate the consequences of deviating from the optimal gait, i.e. analyze the
offset ∆e between subject and machine gait events. Initially, we focus on heel strike
events and then extend our reasoning to toe off events. As mentioned in Section 4.1,
the step length is preset for each pressure plate. This setting determines the maximum
possible displacement of each plate in AP direction. If the subject performs the heel strike
at the moment of maximum displacement, 100% of the preset step length is achieved.
This moment is the optimal point in time, when a heel strike should occur and is equal
to the machine’s HS event. In other words, there is no offset in time (∆e = 0) between
the subject’s gait event and the machine’s gait event. Figure 4.4 shows that +28% GC
after and −22% GC before each of the machine’s heel strike events, the pressure plates
are positioned next to each other, meaning no foot is in front of the other. Therefore, if
the subject’s HS event is offset by either of these time intervals (i.e. ∆e = −22% GC
or ∆e = 28% GC), the resulting step length would be zero. In this case, the subject
would not move forward, but rather walk on the spot. With an event offset of −43% GC
or +57% GC, the respective pressure plate is located in its most posterior position,
resulting in a maximally negative step length, essentially allowing the subject to be
walking backwards. Our goal is to support and identify both, walking forward, as well as
walking backwards in PerPedes.

Figure 6.1 illustrates the offset of a subject’s HS event to a machine’s HS event and its
consequences on the achievable step length. If a subject’s HS occurs within the offset range
of [−22, 28]% GC to the machine’s heel strike event, a positive step length and therefore
forward movement is achieved. If the subject’s HS occurs earlier within [−72,−22]% GC,
the subject is moving backwards. All possible step lengths are achievable within the
range B = [−72, 28]% GC, spanning a complete gait cycle (since 28− (−72) = 100% GC).

Associating Subject and Machine Event

For every machine’s HS event, one corresponding subject’s HS event shall be associated.
Additionally, every subject’s HS event shall be associated with at most one machine’s HS
event. Once the subject’s gait events will have been identified, the HS event occurring
within range B, relative to the machine’s HS event is the corresponding one. Since
each machine’s HS event occurs exactly 100% GC after its predecessor, the ranges are
not overlapping. This assures that no subject’s HS event is associated to two different
machine events.
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6. Gait Event Detection

It is assumed that there exists at least one corresponding subject’s event in the search
range. This assumption is reasonable. Since a gait cycle is cyclic and the machine’s
movement is periodic, we expect the subject to walk in a periodic fashion as well.
Theoretically, the subject could put weight on only the left leg, while lifting the other for
an indefinite amount of time. This would result in the left leg being dragged forward and
back by the machine without any subject’s gait events. Obviously, this is not a walking
pattern and would violate this assumption. In case there exist multiple HS events in B,
the one closest to the machine’s gait event (smallest offset ∆e) is chosen as associated
event. This process is performed separately for HSL and HSR events.

Similarly, a subject’s TO event is expected to be within the bounds B, relative to the
machine’s TO event, which occurs 10% GC after the machine’s HS event. Furthermore,
the same notion can be extended to WTPs, which are ideally located between HS and
TO.

0 57 100-43-100 -22 28 78-72

1000-1000 0 -100 0 100100

Figure 6.1: Offsets of a subject’s HS event to the machine’s HS event and the resulting
step length. Positive step lengths occur in the green region, negative step lengths (moving
backwards) are possible in the regions marked with red. Hatched areas correspond to
offsets associated with machine HS events of the previous or next gait cycle. Note that
the pressure plate’s movement is asymmetrical throughout the gait cycle (Figure 4.4).

6.3 The Center of a Weight Transfer
The previously defined bounds B specify a region where we would expect a subject’s gait
event in relation to the respective machine’s gait event. These bounds span a whole gait
cycle worth of data and are therefore not precise enough to pinpoint the actual event.
Since gait events initiate and complete weight transfers, a first step is to identify a weight
transfer or rather its center and then continue to determine its start and end.

6.3.1 Weight Transfer Points in PerPedes

A simple approach in order to find weight transfers is to identify WTPs. WTPs are
those points where the left and right vertical GRF is equal (Section 2.3). In other
words, WTPs are located at the zero crossings of the GRF’s difference function, i.e.
DGRF = GRFHS −GRFTO = 0. With GRFHS referring to the GRF of the striking foot,
while GRFTO refers to the GRF of the lifting foot.

In PerPedes, since feet are usually fixed and equally distant from the center of the
machine (at ML = 0), a WTP is closely related to the zero crossing of the ML component
of the CoP’s coordinate. The WTP is exactly at the zero crossing in ML direction, if
there exists a point during the weight transfer where the ML components of the pressure
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points at each plate (PL = [xL yL], PR = [xR yR]) are opposite to each other (xL = −xR)
and left and right forces are equal (GRFL = GRFR). Both, the WTP and the ML zero
crossing do not necessarily exist during a weight transfer if it is incomplete. We define a
weight transfer to be incomplete if the weight is not fully transferred from one side to
the other (i.e. the foot is not completely lifted off the pressure plate during the swing
phase). Since WTPs might not exist, we introduce an alternative point (the mediolateral
midpoint), identifying the geometric center of a complete or incomplete weight transfer.

6.3.2 Mediolateral Midpoints

The mediolateral midpoint (in short: midpoint) for a weight transfer is centered halfway
between the outermost left and outermost right CoP. These extrema are temporally
located before and after the weight transfer, respectively. They can be identified in both
static and dynamic frames of reference, since they only depend on the ML component
(i.e. the left/right movement) of the CoP’s trajectory CoPML.

The midpoint is equal to the ML zero crossing, if the ML component of the left and the
right extremum are equally distant from the center of the machine (at ML = 0). The
less symmetrical a subject’s gait happens to be, the more a midpoint will diverge from
the zero crossing and its nearby occurring WTP. The advantages of using midpoints over
WTPs are:

1. Midpoints always exist

2. A midpoint is located at or near the geometric center of a weight transfer

Test data has shown that the midpoints closely correlate with WTPs spatially as well
as temporally in standard (i.e. symmetrical) gait. Furthermore, they are preferable in
strongly asymmetrical gaits, since midpoints better reflect the geometric center of a
weight transfer in comparison to WTPs. Figure 6.2 gives an example of asymmetrical
gait. The right foot is not fully lifted during the left stance phase, shifting the CoP’s
trajectory towards the right. While the midpoint identifies the geometric center of the
weight transfer, the WTP and zero crossing are both situated further to the left.
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Figure 6.2: Illustrating the difference between WTP (pink marker), mediolateral midpoint
(yellow) and ML zero crossing (green) in a gaitogram for one weight transfer. The midpoint
is located halfway between the outermost left (min) and outermost right extrema (max)
of the CoP’s trajectory.

Midpoints can be determined if the left and the right extremum of CoPML can be correctly
identified. For every weight transfer there should be exactly two relevant extrema (one
minimum, one maximum) in CoPML. Local (spurious) extrema must be filtered out.

The Search Region for Midpoints

There are two weight transfers in a machine’s gait cycle. The first weight transfer
WTR→L from the right side to the left side occurs between HSL at 0% GC and TOR at
10% GC. The weight transfer’s center is therefore located at 5% GC. The center of the
second weight transfer WTL→R from left to right occurs at 55% GC.

We would like to find the corresponding subject’s midpoint relative to a machine’s weight
transfer center. As has been established in Section 6.2, a corresponding subject’s gait
event is located relative to a machine’s gait event within the bounds B = [−72, 28]% GC.
This is also valid for every other point occurring between HS and TO events. Therefore,
a subject’s midpoint could potentially be found within bounds B, but since the CoP’s
extrema are necessary for its calculation, the bounds need to be extended.

The CoP’s extrema occur when the majority of force is applied by only one foot, i.e.
around the middle of the single support stance phases, each spanning 40% GC. Assuming
the worst case, means that the first extremum before the midpoint occurs at the beginning
of the stance phase, i.e. at −(40 + 5)% GC2 relative to the midpoint. Analogously, the

25% GC, since the midpoint is in the middle of the double support phase, spanning 10% GC.
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6.3. The Center of a Weight Transfer

second extremum after the midpoint might have an offset of +45% GC.

In order to identify a midpoint relative to the center of a machine’s weight transfer, one
extracts the data section S = B + [−45,+45] = [−117, 73]% GC around it. This data
section then contains at least the midpoint and its extrema. Note that the location of the
midpoint, the weight transfer with start and end, as well as the extrema are not known
as of yet.

Finding Midpoints

A simple strategy in order to identify weight transfers and the extrema is to use the
center line c = min+max

2 between the global minimum min and the global maximum
max of CoPML in data section S as a criterion. Every time CoPML crosses c, a weight
transfer is assumed to be happening. The extrema for this weight transfer are then
given by the largest/smallest CoPML value before/after crossing center c, respectively.
In general, this approach will fail and either identify non-relevant weight transfers (red
markers in Figure 6.3a) and local extrema (mins in Figure 6.3a) or skip relevant ones
(min1 → max1 in Figure 6.3b).

In order to remove local extrema in CoPML, a simple smoothing operation could be
sufficient. Nonetheless, smoothing will worsen the situation for valid but incomplete
weight transfers. The CoPML trajectory for incomplete weight transfers might not go
beyond the center line c between global minimum and maximum (Figure 6.3b). Therefore,
we cannot rely on a global minimum and maximum, but need to calculate the extrema
and the center line adaptively by splitting up the data section S into parts Sj and
individually calculate the center lines for each subsection.

Splitting the Data for Midpoint Detection

Splitting up data section S can be done with a splitting criterion, such that no weight
transfer is divided between subsections. We propose to use the maxima ξi of the GRFs
difference function DGRF = GRFHS − GRFTO as a splitting criterion. These maxima
occur during single support phases and between each pair of subsequent maxima there
exist two weight transfers (Figure 6.4). For weight transfers from left to right WTL→R,
the difference function is given by D(R−L)

GRF = GRFR−GRFL, while for right to left weight
transfers WTR→L, it is D(L−R)

GRF = GRFL − GRFR. It holds that D(L−R)
GRF = −D(R−L)

GRF ,
therefore the maxima of one function are the minima of the other. The maxima of each
difference function can be reliably found after a smoothing operation. We use a uniform
smoothing kernel spanning 17% of the gait cycle (approximately 500 ms in the recorded
test data). This filters out local maxima, while retaining the function’s overall shape.
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(b) Not identified minimum min1 and maximum max2 when using center c between global
minimum min2 and global maximum max1. Splitting up the data into two sections could identify
all extrema and their respective centers c1, c2.

Figure 6.3: Assuming a weight transfer every time CoPML crosses the center c between
global minimum and maximum of CoPML might lead to additional non-relevant weight
transfers (red markers in (a)) or might miss relevant ones (cyan markers in (b)).
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Figure 6.4: Splitting up the data into subsections according to the maxima of DGRF. In
the subsection (highlighted area) between the two maxima ξ1 and ξ2 (green markers)
exist two weight transfers with their corresponding WTPs highlighted with pink markers.

The Algorithm for Midpoint Extraction

For left to right weight transfers WTL→R, the data S is split into subsections Sj according
to the maxima in D(R−L)

GRF . In each Sj the minimum minj in CoPML and its following
maximum maxj is determined. The midpoint MPj is located at the chronologically
last occurring crossing in the range [minj ,maxj ] between CoPML and the center line
cj = minj+maxj

2 . The data sample closest to this crossing is chosen as midpoint for
subsection Sj . Of these midpoints, the one occurring (temporally) closest to the machine’s
weight transfer center at 55% GC is the corresponding one.

For right to left weight transfers WTR→L, the process is done analogously but uses the
difference function D(L−R)

GRF and an inverted CoP trajectory −CoPML. Of the resulting
midpoints, the one closest to the machine’s 5% GC mark is the corresponding one. The
fully formulated algorithm is available in Appendix A.4.

Midpoint Examples

Figure 6.5 shows an example of symmetrical gait where midpoints closely correlate with
WTPs. The figure contains data for left and right vertical GRF, as well as the CoP’s
trajectory in ML direction CoPML. The maxima ξ1, ξ3 of D(R−L)

GRF (green) identify one
subsection (yellow area) in CoPML. This subsection contains one weight transfer from
left to right and its corresponding midpoint MP2. MP2 reflects the data sample closest
to the crossing between CoPML and the center line c2 = min2+max2

2 . For weight transfers
from right to left, the maxima ξ2, ξ4 of D(L−R)

GRF (or equivalently the minima of D(R−L)
GRF )

define the boundaries of two subsections (pink and blue area) in −CoPML. Per subsection
the extrema of CoPML and the resulting midpoint is determined.

Figure 6.6 illustrates three different scenarios in which midpoints differ from WTPs. The
gait in Figure 6.6a shows an incomplete weight transfer from right to left. The right
foot continues to exert pressure during the left stance phase, while the left force barely
exceeds the right one. The dynamic gaitogram shows that the WTPs are located close to
the machine’s center at ML = 0 but are further to the left than the centrally located
midpoints.
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6. Gait Event Detection

Figure 6.6b demonstrates an even more severe case of an incomplete weight transfer. In
this example the left force never exceeds the right one. There is no point of equal forces
(i.e. GRFL = GRFR) and therefore no WTP. The CoP’s trajectory stays on the right
side (i.e. CoPML > 0). Nonetheless, midpoints for the incomplete weight transfer to the
left and back to the right are available.

Figure 6.6c shows that not every WTP identifies a weight transfer. The points WTP1
and WTP2 occur because of an intermediate step with the left foot. Test data has
shown that it is not unusual for participants to drag their feet and not fully lift them
during the respective swing phase. In this particular case, the participant drags the
left foot so strongly that it even exceeds the right foot’s force (WTP1), immediately
corrects this behavior (WTP2) and only then starts the actual weight transfer to the left
(WTP3). Our algorithm automatically handles these cases, since the midpoint is always
the chronologically last crossing of the center line between minimum and maximum. In
the given case, the midpoint is equivalent to WTP3.
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Figure 6.5: Midpoints correlate with WTPs. The data contains two weight transfers
from right to left and one weight transfer from left to right. The extrema ξi of the
difference function D(R−L)

GRF between left (orange) and right (blue) vertical GRF define
the boundaries of the subsections (colored area). Per subsection, the midpoint MPj is
located at the crossing between CoPML and the center line cj .

45



6.
G

ait
E

vent
D

etection

Time

A
P

 (
m

m
)

(a) Offset between midpoints and WTPs.
Time

A
P

 (
m

m
)

(b) No WTPs.
Time

A
P

 (
m

m
)

-50

125

(c) Spurious WTPs.

Figure 6.6: Comparison of CoP midpoints and WTP. While midpoints (yellow marker) identify the geometric center of each
weight transfer, WTPs (pink marker) might be offset (a), might not exist at all (b), or might occur several times (c).
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6.4 O Gait Event, Where Art Thou?3

The midpoint identifies the geometric center of a weight transfer and is determined by
using the extrema of the CoPML trajectory. However, in general, these extrema are not
marking the start (HS) and the end (TO) of a weight transfer. These gait events are yet
to be determined. First, this section discusses typical problems in gait event detection in
PerPedes. Afterwards, the search bounds are narrowed down. Finally, we explain which
approaches have been tried and are likely to fail with illustrative examples. These lessons
learned can then be used to develop the final algorithm in Section 6.5.

6.4.1 Considerations

When using a typical hardware setup, based on a treadmill and a pressure sensing system,
it is simple to identify the foot’s initial contact (HS) and the instance of last pressure (TO).
From a signal processing perspective, given continuous force measurements GRF(t), HS
and TO events are located exactly at the zero-crossings of function GRF∗(t) = GRF(t)−T ,
where T is a threshold, essentially ignoring small force measurements (sensor noise).
Figure 6.7a gives an example of gait with existing zero-crossings in PerPedes. Since the
subject’s feet are held down by foot straps, a complete lifting of the feet is impossible.
Nonetheless, pulling on the foot straps causes negative forces to be measured at the
pressure plates.

• No WTPs, because of large one-sided pressure (Figure 6.7b).

• Additional zero crossings without event characteristics (Figure 6.7b).

• Slow force buildup (Figure 6.8a).

• Intermediate steps during swing phase (Figure 6.8b).

The most critical observation is that zero crossings in PerPedes are different to treadmill
systems. Zero crossings might not exist at all, if the foot is not pulling hard enough
on the foot strap in order to create negative forces. Therefore, a thresholding method
for GED cannot be applied. Additional zero crossings can exist if the subject fails to
lift the foot properly during the swing phase, leading to accidental contacts with the
pressure plate. These contacts do not show event characteristics, since they neither start
nor end a weight transfer. In case these contacts persist over a longer period of time, we
might see a slow increase in forces (force buildup), until finally the forces are explosively
exchanged between both sides during the moment of weight transfer.

In the following, we define a search region for gait events around the midpoint (Sec-
tion 6.4.2). Within this region, different GED approaches are then discussed (Sec-
tion 6.4.3). Subsequently, with a better understanding of the data, our GED algorithm
is introduced in Section 6.5.

3A reference to the film O Brother, Where Art Thou?
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(a) Normal gait. Feet pull on the foot straps and exert negative forces.
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(b) Gait dominated by the left foot’s pressure with incomplete weight transfers and no WTPs.

Figure 6.7: Possible gait scenarios (1). Vertical GRFs over the course of one and a half gait cycles of PerPedes. With normal
gait (a), gait events (green markers) occur at the zero crossings (GRF = 0), although these are not sufficient indicators for an
event (b). Deviation δ between the subject’s gait event and the optimal time of occurrence is used for performance evaluation.
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Figure 6.8: Possible gait scenarios (2). Vertical GRFs over the course of one and a half gait cycles of PerPedes. Frequently,
feet are lifted incompletely, leading to positive force buildups (hatched areas) before heel strikes. The deviation δ between the
subject’s gait event and the optimal time of occurrence can be used for performance evaluation.
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6. Gait Event Detection

6.4.2 Fantastic Events and Where to Find Them4

Section 6.3.2 describes how to identify the center of a weight transfer, the mediolateral
midpoint, or alternatively the WTP, if it exists. The gait events are then located before
and after the midpoint, respectively. In order to find the events, the maximum possible
search range around the midpoint needs to be defined.

In general we assume that the heel strike event occurs before the midpoint, while the toe
off event occurs afterwards. The optimal gait cycle defines each double support phase to
last 10% GC. Test data has clearly shown that this does not hold in PerPedes, leading to
longer double support phases, since weight transfers happen more gradually.

As an initial conservative lower bound, we can state that the heel strike cannot be more
than 50% GC away from the midpoint, since this is approximately the time of occurrence
of the previous midpoint. The previous midpoint marks the location of the previous
weight transfer. In the range between this lower bound and the midpoint, the HS cannot
happen

1 before the smallest measurement in the GRF of the striking foot,

2 before the most extremal point of the CoPML,

3 during or before negative GRF forces), or

4 before a “significant” turn in the CoPML

To show statement 1 , we can assume that the HS occurs at location h before the smallest
measurement at location m. It holds that GRF(h) ≥ GRF(m). This means that the
foot is either raised between h and m or is not increasing pressure (GRF(h) = GRF(m)).
It follows that there is no HS at h.

Statement 2 needs some refinement. A right heel strike moves the CoPML from left
to right. For a right heel strike, the most extremal point is the point furthest to the
left. If the heel strike would occur before this point, then consequently the CoP would
move to the left, which indicates it is not a right heel strike. For left heel strikes, the
argumentation follows analogously.

Statement 3 refers to the fact that a heel strike cannot occur if the foot is lifted.
Furthermore, a heel strike cannot lead to a situation where the foot is lifted.

The final statement 4 is related to 2 and means that the CoP cannot move in the
opposite direction after the heel strike. While we allow some tolerance (the turn must
be significant), strictly speaking this does not need to be allowed. A significant turn
in the CoP’s mediolateral movement is defined as a point where the CoP’s direction of
movement changes, even after filtering is applied. We apply a uniform smoothing kernel
over 5% GC to allow some inconsistency in measurements and movement.

4A reference to the book Fantastic Beasts and Where to Find Them
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6.4. O Gait Event, Where Art Thou?

The search range is then limited by the closest of these four points to the midpoint. The
same rules apply to TO events, although in a time-reversed manner. Figure 6.9 shows
an example of these locations. The heel strike is expected to occur in the time between
point 4 and the midpoint, the toe off needs to occur in the time between the midpoint
and the following point marked with 2 / 3 .
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Figure 6.9: Search boundaries for GED. 1 Smallest GRF measurements, 2 extremal
points of CoPML, 3 nearest points in time to the midpoint with negative forces, 4
significant turn in CoPML. In this example, heel strike and toe off events are expected
to occur within the highlighted (checkerboard) time span.

6.4.3 (Im)possible Approaches to Find Gait Events

This section discusses approaches to find gait events with the help of illustrative examples
and whether or not they are suitable in the context of our system. In nearly all cases,
the usage of the midpoint and the WTP is interchangeable, but we use the midpoint in
all our examples.

Earliest Contact

The earliest contact is the point with the smallest positive value in the striking foot’s
GRF or its first zero-crossing before the midpoint. This point typically does not show
heel strike characteristics (i.e. starting the weight transfer). Most often, the earliest
contact occurs while the pressure plate is still moving forward. It happens too early and
indicates involuntary contact of the foot with the pressure plate in preparation of the
weight transfer (Figure 6.10).
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Figure 6.10: Gait event example - Earliest contact. Earliest contact (E, pink marker) with
no heel strike characteristics and proposed heel strike (HS, green) before the midpoint
(MP, yellow).

Relevant Change in one GRF

One could try to detect heel strikes by analyzing the change in the GRF of the striking
foot. A heel strike could then correspond to a point in time preceding a significant change
in the GRF. Test data shows that this is not a valid approach, since weight transfers
can be started by instead “falling” into the support gear (Figure 6.11). More often, it is
unclear which point of change of the GRF is triggering a weight transfer, since it is not
necessarily the start of the largest nor the earliest change.
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Figure 6.11: Gait event example - Weight transfer by releasing weight. Instead of
increasing force on the right foot (blue), the weight transfer is performed by decreasing
force on the left foot (orange) and transferring the weight to the support gear (violet).

Relevant Change in both GRFs

As we have seen, analyzing only one GRF might not be enough. Therefore, an alternative
approach would be the analysis of a combination of both GRFs, i.e. the difference
DGRF(t) = GRFHS(t)−GRFTO(t) and its change ∆DGRF(t) = d

dtDGRF(t). We would
expect that a heel strike triggers a change in the difference, therefore the event should
be located in a (local) minimum of ∆DGRF(t). In Figure 6.12 the weight transfer might
be starting out from a local minimum of ∆DGRF(t), but there is no indication which
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minimum it could potentially be. In turn, this means that the minima of ∆DGRF(t) on
their own are not meaningful for event detection.
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Figure 6.12: Gait event example - Change of GRF difference. The minima of the change
of GRF differences ∆DGRF (violet) does not reveal the start of a weight transfer.

Another combination of both GRFs, is available through the CoPML trajectory. This
function represents the ML component of a weighted average between the two pressure
points on each pressure plate. Therefore, it is also influenced by the pressure changes
on only one plate. As an example, rocking only one foot sideways, changes the pressure
point on the plate and therefore influences the CoPML trajectory. This happens even if
the magnitude of forces measured at both plates stay the same. Therefore, while CoPML
is similar to DGRF, it incorporates more than just the force difference and might distort
the analysis of forces between feet.

Upper Point of Static Gaitogram

Under perfect circumstances (Figure 6.13), one can identify gait events from a geometrical
perspective as the upper corner point of the static gaitogram. Different definitions are
possible to find this point. Either it is the most anterior point of the static CoP before
the midpoint. Or it is the last point of the static CoP before the midpoint where
the movement in AP direction is reversed (equivalently, where the velocity of the AP
movement is zero). While both definitions can refer to the same point in some cases (HS
in Figure 6.13 and C in Figure 6.14), in general they can be different (Points A and B in
Figure 6.15).

There are several problems with this approach. Firstly, it assumes that a HS occurs while
the pressure on the contralateral foot is in the front. This depends not only on a correct
heel to toe motion, but also on the shoes in use. With specific gait disturbances (e.g.
calcaneal gait), this might not be possible at all. Secondly, test data has shown that this
corner might not exist (Figure 6.15) or is misleading (Figure 6.14) if the pressure point
of the weight-bearing foot moves posterior before the start of the weight transfer.
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Figure 6.13: Gait event example - Geometrical approach. With rapidly changing GRFs
and the foot’s pressure moving from heel to toe, one can clearly identify HS events in
both static and dynamic gaitograms.

MP

MP

MP
HS

HS

HS

C

C

C

A
P

 (
m

m
)

A
P

 (
m

m
)

100

0

Figure 6.14: Gait event example - Static gaitogram with misleading upper corner. The
corner (C, pink marker) does not represent the start of the weight transfer. After the
corner, the static CoP first moves posterior (arrow), before the HS starts the weight
transfer.
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Figure 6.15: Gait event example - Static gaitogram without upper corner. Highlighted
are the most anterior point (A) of the static CoP before the midpoint and the last point
of the static CoP before the midpoint where movement in AP direction is reversed (B).

Lower Point of Dynamic Gaitogram

While the static gaitogram can easily be distorted by each foot’s pressure point, the
dynamic gaitogram is dominated by the position of each foot in the moving system, i.e.
the position and movement of the pressure plates. Instead of evaluating the upper corner
in the static gaitogram, one can identify the lower corner of the dynamic gaitogram as

54



6.4. O Gait Event, Where Art Thou?

gait event. This corner is either the most posterior point of the dynamic CoP before the
midpoint or the last point of the dynamic CoP before the midpoint where the movement
in AP direction is reversed (equivalently, where the velocity of the AP movement is zero).
These definitions are not equivalent and might result in different points (HS2 vs. HS3 in
Section 6.5.3).

If the subject’s heel strike is optimally timed with the machine’s heel strike, the pressure
plates are positioned furthest apart. The pressure plate of the striking foot is then most
anterior, while the weight-bearing foot’s pressure plate is most posterior. Therefore, the
dynamic CoP is initially posterior and the weight transfer causes it to move anterior
towards the striking foot. If the weight transfer happens quickly, slowly moving pressure
plates will have no significant influence on the dynamic CoP’s trajectory. The dynamic
gaitogram will then show weight transfers as straight lines and sharp corners as gait
events (Figure 6.13). In those cases, the dynamic gaitogram’s lower point clearly identifies
the heel strike.

If a subject’s heel strike is occurring earlier than the optimal timing, the pressure plates
will not be maximally apart and are therefore still moving. If the weight-bearing foot is
moving downwards with the pressure plate while the weight is simultaneously transferred
to the other side, the dynamic gaitogram will become distorted (Figure 6.16). In this
case, the lowest point of the dynamic gaitogram will not reflect the heel strike, but will
depend on how quickly the weight is transferred and how fast the plates are moving.

The situation becomes even more pronounced when walking backwards and therefore
initiating the weight transfer around half a gait cycle earlier than the optimal timing
(Figure 6.17). In this case, the dynamic CoP does not move from a posterior position
to an anterior position during the weight transfer, but moves front to back. The lowest
point of the dynamic gaitogram becomes insignificant and does not refer to a gait event
anymore.
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Figure 6.16: Gait event example - Dynamic gaitogram with distortions from plate
movements. Synthetic data with the heel strike occurring 20% GC too early (before the
optimal machine event). The lowest point (L, pink marker) of the dynamic gaitogram
does not correspond to the heel strike (green).
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Figure 6.17: Gait event example - Dynamic gaitogram, walking backwards.

Total Vertical Forces

As Section 3.2.2 describes, the total amount of vertical ground reaction forces could be
used to identify gait events. Mawase et al. [MHBHK13] describe heel strikes to coincide
with a local minimum in the total vertical forces. Following a sharp peak in forces, toe
off events either coincide with the next local minimum (Roerdink et al. [RCC+08]) or
occur shortly afterwards (Mawase et al. [MHBHK13]).

In our system, we define the total amount of vertical ground reaction forces as:

ΣGRF = 100% · W
+
L +W+

R

WB
(6.1)

ΣGRF is the sum of the measured positive weights at the pressure plates, in relation
to the (estimated) body weight. Alternatively, the sum of total forces could include the
weight WS carried by the support system:

ΣGRFS = 100% · W
+
L +W+

R +WS

WB
(6.2)

Using these definitions and comparing the observations from the literature with our
available test data, we are unable to find a reliable correlation. Local minima do not
necessarily identify heel strike events, as can be seen with Min1,Min2, and Min3 in
Figure 6.18. In contrast, toe off events are either coinciding with (Figures 6.18, 6.19) or
are located near a (local) minimum (Min9 in Figure 6.20). Potentially, this allows the
identification of toe off events, but we refrain from doing so, since the overall shape of
the total vertical forces differs from the literature, as is shown next.

Mawase et al. [MHBHK13] observe maxima in the total vertical forces to occur during
double support and minima during midstance. Contrarily to this, our test data shows
inconsistent behavior. On the one hand, Figure 6.19 shows the maxima Max3,Max4 to
occur during double support, toe off coincides with the next local minimum, and the
global minima Min6,Max7 occur during single support. This is in accordance with the
literature. On the other hand, Figures 6.18 and 6.20 show the maxima to occur during
single support, while the global minima are close to the toe off event instead of the
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midstance event (occurring around 20% GC later). The reasons for these discrepancies
are unknown, but may be linked to the weight support system and/or the usage of the
handrails.

Whether or not to include the support weight in the total amount of vertical forces
remains unclear. The overall shape of both functions, ΣGRFS and ΣGRF is very
similar. However, test data has shown that including the support weight can lead to less
pronounced minima in ΣGRFS (e.g. Min8 and Min9 in Figure 6.20).

Our overall recommendation is not to use the total forces for GED. In case this cannot
be avoided, one should rely only on the measurements at the foot plates (ΣGRF) and
not include the support weight (ΣGRFS).

HS
MP TO

MP

HS

TO

Figure 6.18: Gait event example - Total vertical GRFs (1). Analysis of extrema in
the total vertical forces with (ΣGRFS) and without support weight (ΣGRF). None
of the local minima Min1,Min2, and Min3 in either of the functions correspond to the
proposed HS event. The proposed TO event can be found near the global minimum of
both functions.
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TO

MP

MP TOMP TOTO
MP

Figure 6.19: Gait event example - Total vertical GRFs (2). Analysis of extrema in the
total vertical forces with (ΣGRFS) and without support weight (ΣGRF). The precise
location of the HS event is unknown but could be close to either Min4 or Min5. The
proposed TO event can be found in a local minimum of both functions. Global minima
Min6,Min7 occur during single support.

MP

MP

Figure 6.20: Gait event example - Total vertical GRFs (3). Analysis of extrema in the
total vertical forces with (ΣGRFS) and without support weight (ΣGRF). The minima
Min8,Min9 in ΣGRF are less pronounced than in ΣGRFS . The precise location of HS
and TO is unknown, but could be close to the minima Min8,Min9, respectively.

6.5 The Gait Event Detection Algorithm
The developed gait event detection algorithm is used for both heel strike events as well
as toe off events. The algorithm itself is formulated for heel strike detection. In order
to detect TO events, it is sufficient to “reverse time”, i.e. traverse the gait cycle’s data
in the opposite direction or flip the data array from left to right. Additionally, all AP
coordinates need to be negated.

We propose a GED algorithm, which combines spatial information on where pressure
occurs and the change in forces between left and right side. As a first step, we derive
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functions from the force measurements and the pressure points. Afterwards, these
functions are used to navigate the data and arrive at the proposed gait events.

6.5.1 Deriving Measures for Detection

In general, weight transfers happen quickly. The standard gait cycle defines a weight
transfer to happen within 10% GC. During a weight transfer, the weight from the lifting
foot transfers quickly to the striking foot. This means that the CoP also quickly changes
position. The change in the CoP’s position is its velocity.
It is assumed that it is harder (takes more effort) to transfer the same amount of weight
between feet if the feet are farther apart. To reflect this assumption in the data, we need
to take the distance between the feet into account. The distance between feet relates to
the distance between the pressure points at the respective pressure plate:

D(t) = ‖PHS(t)− PTO(t)‖ (6.3)
Note that PHS and PTO includes the displacement of the respective pressure plate in AP
direction (Figure 6.21). Since the static CoP assumes that the feet are positioned next
to each other, it does not correctly reflect the distance between feet. On the other hand,
the dynamic CoP takes this distance into account. Because of this, the dynamic CoP’s
velocity will be higher when transferring weight between points farther apart.

ML

AP

Figure 6.21: CoP movement between two fixed pressure points over the time span ∆t.
The CoP moves along the line PHS − PTO with respect to the exchanged forces between
both points.
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Formally, we can show that the CoP’s velocity is dependent on the distance between
the pressure points. First, we note that the vertical GRF and the measured weight at
the respective plate are equal, except for a constant factor (Section 5.3). Then we can
reformulate the dynamic CoP (compare with Section 5.4.2), using vertical GRFs as:

CoPd(t) = PHS(t) ·GRFHS(t) + PTO(t) ·GRFTO(t)
GRFHS(t) + GRFTO(t) (6.4)

This represents a general case including negative forces. Again, the pressure points
PHS(t), PTO(t) include the displacement in AP direction of the respective pressure plate.

In order to understand the CoP’s movement and its velocity between two pressure points,
it is useful to assume that the pressure points are fixed (i.e. not changing over time).
Furthermore, we assume that forces only flow between the pressure points, meaning that
the total amount of forces is constant over time, i.e.

GRFTotal = GRFHS(t) + GRFTO(t), ∀t (6.5)

This results in the modified version:

CoP∗d(t) = PHS ·GRFHS(t) + PTO · (GRFTotal −GRFHS(t))
GRFTotal

(6.6)

The velocity (i.e. its first derivative) of this idealized system is then:

d
dtCoP∗d(t) = (PHS − PTO) · GRF ′HS(t)

GRFTotal
(6.7)

Since the total amount of forces is constant, the change in one GRF is equal to the
negative change in the other, i.e. GRF ′HS(t) = −GRF ′TO(t). The velocity itself is a
vector quantity and its magnitude is:

V ∗(t) = ‖ d
dtCoP∗d(t)‖ = ‖PHS − PTO‖ · |

GRF ′HS(t)
GRFTotal

| (6.8)

We can see that the velocity’s magnitude V ∗(t) increases if the distance ‖PHS − PTO‖
increases or more force |GRF ′HS(t)| is transferred between the pressure points. This
shows that the distance is implicitly encoded in the CoP’s velocity.

The actual velocity’s magnitude

V (t) = ‖ d
dtCoPd(t)‖ = ‖ d

dt
PHS(t) ·GRFHS(t) + PTO(t) ·GRFTO(t)

GRFHS(t) + GRFTO(t) ‖ (6.9)

also depends on the change in the pressure points’ location and the change in the
individual forces. The total amount of forces is not constant, since forces change with
the body’s acceleration and can be transferred between support gear and foot plates.

If pressure is solely on one foot and constant (e.g. GRFTO = 100,GRFHS = 0), then
V (t) = ‖ d

dtPTO(t)‖. This means that V (t) is non-zero if the pressure point PTO(t) changes.
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6.5. The Gait Event Detection Algorithm

This is true, if the pressure plate is moving during one-sided pressure. Figure 6.22 shows
that V (t) is high during the weight transfer (region R2), because forces are exchanged
rapidly between both sides, but also during one-sided pressure, when the pressure plates
are moving quickly (regions R1, R3). Additionally, one can see that the start of the weight
transfer (HS) is located in a local minimum before a sharp increase in V (t), while TO is
located in a local minimum afterwards.
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Figure 6.22: The magnitude of the dynamic CoP’s velocity. Velocity is high during
one-sided pressure while the pressure plates are moving quickly (regions R1, R3) and
when the difference between left and right forces changes (region R2).

We know from test data that local minima in V (t) are ambiguous. There might be
multiple minima and the last occurring minimum before the midpoint does not necessarily
identify the heel strike’s location. Therefore two additional measures are introduced.
Those measures also identify weight transfers and can be used in combination with V (t)
to identify gait events.

Before a weight transfer, the force GRFTO of the foot which is about to be lifted is high.
After the weight transfer, the contralateral foot’s force GRFHS should be high. Again,
assuming that a force transfer takes more effort if the feet are farther apart, we formulate
our measures as:

M1(t) = (GRFT O(t)−GRFHS(t)) ·D(t) (6.10)
M2(t) = GRFT O(t) ·D(t) (6.11)

M1(t) relates to the force necessary to transfer from PTO(t) to PHS(t) over distance
D(t) to achieve a force equilibrium between both sides. The measure M1(t) is signed,
indicating the direction of forces (from striking foot to lifting foot, or vice versa). It is
zero if left and right forces are equal, meaning no force needs to be exchanged to create
an equilibrium.

M2(t) measures the amount of force of the lifting foot weighted by the distance between
the pressure points. In other words, it measures the remaining effort to perform until the
foot is lifted with respect to the distance between the pressure points. Generally, M2(t)
is positive as long as the lifting foot exerts some force. It is negative if the foot is pulling
on the foot straps.
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M1(t) is at its maximum if the force GRFT O(t) is maximal, the force GRFHS(t) is minimal
and the distance is maximal. M2(t) is at its maximum if both the force GRFT O(t) and
the distance are maximal.

If the human subject walks perfectly in PerPedes, then the following conditions apply:

1. The subject’s HS coincides with the moment when the pressure plates are farthest
apart.

2. The subject’s weight is fully on the foot to be lifted.

The moment when the pressure plates are farthest apart is the moment when the pressure
plates are about to reverse direction. This means that the velocity of each pressure plate
is zero and the CoP is not moving, since also no weight is exchanged. This means that
the CoP’s velocity is zero, i.e. V (t) = 0. The distance D(t) is at its maximum, so is
GRFT O(t) and GRFHS(t) is zero (ignoring possible negative forces in GRFHS(t)).

In this optimal scenario, V (t) is zero and at a (local) minimum, while M1(t) and M2(t)
are maximal. This is exactly the point when the heel strike occurs. During the weight
transfer, V (t) first increases, then decreases again, while M1(t) moves to a negative
minimum and M2(t) moves to zero (again, ignoring possible negative forces, this time in
GRFT O(t)).

The less optimal the subject’s gait is, the less M1(t), M2(t), and V (t) will agree on the
same location. Figure 6.23 shows an example where the maxima of M1(t) and M2(t)
coincide and pinpoint the heel strike event. Contrarily, in Figure 6.24 the maxima are at
different locations but span a possible range where the heel strike is located.

HS

HS

HS

100

0

G
R

F
 (

%
 B

W
)

Time

M
a
g

n
it

u
d

e

0

A
P

 (
m

m
)

A
P

 (
m

m
)

MP

MP

MP

Figure 6.23: MeasuresM1 andM2 - Same location of maxima. The local maxima pinpoint
the event occurrence.
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Figure 6.24: Measures M1 and M2 - Different locations of maxima.

6.5.2 Formulating the Algorithm

We now combine the CoP’s velocity V (t) and the measures M1(t),M2(t) in order to find
the heel strike. Figure 6.25 illustrates the algorithm. Our heuristic approach uses Min2
and Max2 of M2(t) A to find the maximum Max1 of M1(t) B and then follow the
velocity gradient d

dtV (t) downwards C to a local minimum of V (t), where we suspect
the HS event.

Test data has shown that the maximum Max1 of M1(t) generally occurs before the
maximum Max2(t) of M2(t). We suspect that Max1(t) occurs before Max2 since M1(t)
includes GRFHS(t) and there is a tendency that changes in the GRF of the striking foot
occur slightly before changes in the GRF of the lifting foot manifest. Test data also
demonstrated that the maximum Max1 is not always clearly pronounced. We therefore
use the local extrema [Min2,Max2] of M2(t) as a search region for Max1.

With respect to the search boundaries (Section 6.4.2), the GED works as follows. The
first local maximum Max2 in M2(t) is identified before the midpoint. Searching beyond
Max2 reveals the local minimum Min2 in M2(t). In between those limits, if it exists, the
local maximum Max1 is identified. If there is no local maximum, Max1 corresponds to
the location of the maximum value between [Min2,Max2]. We then follow the velocity
gradient downwards until we reach a local minimum in V (t). This point corresponds
to the heel strike event. The search process is sketched in Algorithm 6.1 and the full
Matlab code is given in Appendix A.5.
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Figure 6.25: The gait event algorithm, illustrated.

Algorithm 6.1: Find a subject’s heel strike event
Input: Midpoint MP; Measures M1,M2; Magnitude of CoPd’s velocity V
Output: The heel strike event HS

1 Max2 = findMaximumBeforePoint(MP,M2);
2 Min2 = findMinimumBeforePoint(Max2,M2);
3 Max1 = findMaximumBetween(Min2,Max2,M1);
4 HS = findMinimumFollowingGradientFromPoint(Max1, V );
5 return HS;

Implementation Notes and Modifications

Some data is smoothed using a uniform (mean) filter in order to remove small disturbances
in the data, possibly caused by jerky movement. The filter is applied to the velocity’s
magnitude V (t), measure M2(t), and the CoP’s ML trajectory CoPML (Section 6.4.2).
It spans 5% GC, which is approximately 150 ms in the recorded test data. Filtering
is used to remove insignificant turns in CoPML, spurious maxima in M2(t), and small
fluctuations in V (t).

Measure M2(t) (Equation 6.11) does not depend on GRFHS(t). As mentioned in
Section 6.4.3, relying on the change of a single GRF might be insufficient for GED.
To account for the change in both GRFs, we propose a modification to M2(t). Tests
have shown that the usage of a modified version of M2(t) provides slightly better results.
This modified version effectively dampens non-relevant maxima while emphasizing points
where both GRFs change. It is defined as:

M∗2 (t) = GRFT O(t)
GRFHS(t) + GRFT O(t) ·D(t) (6.12)

Furthermore, we propose a second modification to the CoP’s calculation. A foot’s
movement leads to a slight change in its pressure point P , even if the magnitude of
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6.5. The Gait Event Detection Algorithm

pressure stays constant. This change in P leads to a subsequent change in the CoP and
therefore influences the velocity measurements. Furthermore, a change in P influences
the distance D(t).

We are only interested in the interaction of forces between both feet. For our GED
algorithm, the precise pressure point underneath the foot is irrelevant and, as mentioned
before, might influence the calculations. Each foot’s position is constant with respect to
the pressure plate, since the foot straps hold the foot in place.

It is therefore sufficient to use a representative and fixed pressure point P ∗{L,R} on each
pressure plate to represent the respective foot. This removes the influence of any change
in the foot’s pressure point, while leaving the force measurements intact. For each
foot, the ML component of P ∗ corresponds approximately to the foot’s midline (i.e.
the position in ML direction where the middle of the foot is arrested on the plate).
Whereas the AP component is the respective pressure plate’s offset in AP direction.
These substitute coordinates remove distortions from M1(t),M2(t),M∗2 (t), and V (t),
improving the detection of gait events.

6.5.3 Validation

Schepp’s PerPedes is a novel system, with our work being the first approach at extracting
user performance data. Since gait patterns can be vastly different than expected from
literature, there is also no gold standard available for identifying the beginning and end
of a weight transfer. In order to validate the algorithm, the first step was to manually
annotate the test data and mark start and end of each weight transfer. It turned out
that this process is inherently biased, since it depends on how the data is preprocessed,
which data is used, and how it is presented. The static and dynamic gaitogram present
information differently than velocity, M1,M2, or GRFs. Furthermore, the gait event
might be ambiguous or not clearly identifiable by manual inspection.

The validation of our GED algorithm is twofold. First, one can expect that healthy
participants are able to repeat similar movements over time. This consistency in movement
should lead to a time-consistency in the occurrence of gait events. This means that events
should occur at approximately the same time as in adjacent gait cycles if the movement
is about the same. Secondly, we expect that the detected event is in accordance with
literature for standard gait patterns. This means that if standard algorithms agree on a
specific event location, our algorithm should agree as well. The first requirement relates
to the precision of our algorithm, while the second one defines its accuracy. Figure 6.26
illustrates the difference between those two terms.
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Figure 6.26: Accuracy vs. Precision. Image taken from Keller [Kel19].

The following algorithms are chosen for validation. Figure 6.27 shows the locations of all
identified gait events in one representative example.

• HS1 - Point before the midpoint with zero AP velocity in static gaitogram

• HS2 - Point before the midpoint with zero AP velocity in dynamic gaitogram

• HS3 - Most posterior point in dynamic gaitogram

• HS4 - Start of largest positive CoP acceleration

• HS5 - Start of largest change in GRFHS

• TO1 - Point after the midpoint with zero AP velocity in static gaitogram

• TO2 - Point after the midpoint with zero AP velocity in dynamic gaitogram

• TO3 - Most anterior point in dynamic gaitogram

• TO4 - Most anterior pressure point of the lifting foot

Algorithms from the Literature

Verkerke et al. [VHZ+05] defines heel strikes to occur when the dynamic CoP’s velocity
in AP direction crosses the zero level (HS2). This is typically equivalent to the point
in time when the CoP reaches its most posterior position (HS3), but does not need to
be (see Figure 6.28). Equivalently, toe off can be determined analogously through the
zero-crossing of the velocity of the dynamic CoP’s trajectory in AP direction after the
midpoint (TO2) or the dynamic CoP’s most anterior position (TO3). Both, HS3 and
TO3 have been proposed in different publications [RCC+08], [RCS+14], [TCvDR19] in
the context of gaitography, as well as with marker-based kinematics [ZJRH08]. In the
following, we reason about standard gait patterns, what to expect, and how to derive the
remaining algorithms for detection.
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Algorithms per Foot

During normal gait, the initial contact is with the heel, followed by moving the pressure
along the foot and ending contact at the toes. Keeping this in mind, the static CoP’s
trajectory can be examined as well. The point where the static CoP’s AP direction
changes (i.e. AP velocity is zero), can be identified as heel strike (HS1) and toe off (TO1),
respectively. In case the pressure point moves from heel to toe, the TO event can be
defined as the most anterior pressure point of the lifting foot (TO4) after the midpoint.
Analogously, heel strike could be defined as the most posterior point of the striking
foot before the midpoint, but test data has shown that this assumption rarely holds in
PerPedes. Heel strikes appear to occur often midfoot, followed by the pressure point
moving backwards during the weight transfer. The reasons for this are unknown, but
could be connected to tightly fastened foot straps. Since this classification is unreliable
for heel strikes, no corresponding algorithm has been used.

Velocity and Acceleration-based Algorithms

In general, detecting heel strikes is more challenging than toe offs, since the forces
typically change gradually before the actual heel strike, but stop abruptly after the weight
transfer is completed. In order to compensate for this difficulty in detection, we propose
two additional heels strike algorithms. A weight transfer is typically accompanied by a
spike in acceleration of the CoP’s movement and a peak in the derivative of GRFHS . We
introduce two heuristics, identifying the beginning of the largest CoP acceleration (HS4)
and the start of the largest change in GRFHS (HS5). HS4 is found by searching for the
start of the largest positive CoP acceleration before the midpoint. The acceleration’s
start is defined as the first point before the maximum where the acceleration is smaller
or equal to zero. HS5 searches for the maximum in the derivative of GRFHS within the
standard search boundaries (Section 6.4.2) and a local minimum before this maximum
marks the event’s location.

With these standard GED algorithms, it is possible to visualize the range of fluctuation
(i.e. the accuracy) and consistency in time (i.e. the precision) of our GED algorithm (see
Section 8.6). We introduce a metric to measure the range of fluctuation in Section 7.1.3
and present examples based on test data in Chapter 9.
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Figure 6.28: HS2 vs. HS3. The most posterior point in the gaitogram (HS3) might be different to the first point where the
AP direction is reversed (HS2).
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CHAPTER 7
Spatiotemporal Measures

Now that gait events have been identified, the framework for measuring the subject’s
performance has been established. This chapter shows how to derive the previously defined
spatiotemporal parameters (Section 2.5) in the context of our system. Furthermore,
we introduce metrics to interpret possible discrepancies between the subject’s and the
machine’s gait cycle. Later on, the focus switches to symmetry measures, an important
instrument for performance, especially with stroke patients.

7.1 Measures in PerPedes
The spatiotemporal parameters step length, stride length, swing time, stance time, and
double support time can be directly inferred from the gait events. Swing time refers to the
elapsed time (seconds) between the subject’s TO and HS events for each leg respectively.
Stance time is measured between HS and TO. Double support time corresponds to the
duration of both double support phases, i.e. between HSL and TOR and between HSR
and TOL events.

The parameter step length is usually measured as the distance between two similar
contact points on both feet. Typically between two consecutive HS or TO locations.
Both events, HS and TO occur with a minimal amount of contact area on the respective
pressure plate, since the foot is either in the process of being lifted or just hit the ground.
Because of this small contact area and PerPedes’ low resolution of six pressure sensors,
the pressure point at the moment of heel strike or toe off might only correspond to
the reading of exactly one pressure sensor. This essentially means that the pressure
point is imprecise and/or misleading and therefore cannot be used. Instead, a reliable
measurement is the distance between both heels during the HS event. Since the feet
are strapped in and fixed on the pressure plates and both feet can be assumed to be
approximately of the same size, the distance between both heels is equal to the offset of
one pressure plate to the other (compare with Figure 2.7). Essentially, in the context of
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our system, the left step length SLL is equal to the offset of the left pressure plate in
comparison the right pressure plate at the moment of the left HS event. The right step
length SLR is calculated analogously. Stride length is derived from both step lengths as
SLL + SLR.

7.1.1 Timing in PerPedes

The PerPedes platform with its predefined movements can act as a ground truth in
regard to the optimal timing of gait events. We discussed in Section 6.2 that a subject’s
gait events might not coincide with the machine’s gait events. It is useful to measure
the discrepancy between the subject’s behavior and the machine’s movement. A simple
measure is the timing difference between the subject’s and machine’s gait events (compare
with δ in Figure 6.7 and Figure 6.8). These differences in timing are extensively used to
generate patient instructions in order to improve the patient’s timings and are discussed
in Section 8.4.1.

7.1.2 System-specific Metrics

In the following, we introduce metrics, specific to PerPedes, derived from force measure-
ments. These metrics are used to evaluate the balance or differences in strength between
the left and the right leg. Furthermore, it is important to measure how well the subject
is lifting his/her leg during swing phase.
In order to measure how much contact with the pressure plate occurs during the respective
swing phase, we introduce a new metric, called the swing ratio:

Rswing,{L,R} = 100% · 1∫ 100
0 GRF+

{L,R}(t)dt

∫
swing phase,{L,R}

GRF+
{L,R}(t)dt (7.1)

This corresponds to the ratio of positive forces (GRF+) applied in the machine’s swing
phase in relation to the whole gait cycle. Under ideal circumstances, the swing ratio is
zero, meaning the foot is completely lifted off the ground and exerts no positive forces.
The swing ratio is undefined, if there are no positive forces in the whole gait cycle
(i.e.

∫ 100
0 GRF+

{L,R}(t)dt = 0), which only occurs if the respective foot never touches its
pressure plate during a whole gait cycle of the machine.
Three additional metrics are introduced, in order to evaluate the difference in strength
between left and right leg during different intervals (stance phase, swing phase and whole
gait cycle) of the machine’s gait cycle:

I = max(GRF+
L (t),GRF+

R(t))−min(GRF+
L (t),GRF+

R(t)),∀t ∈ [0, 100]

Dstance = 100% · 1
60I

∫ 60

0
GRF+

R((t+ 50) mod 100)−GRF+
L (t) dt

Dswing = 100% · 1
40I

∫ 100

60
GRF+

R((t+ 50) mod 100)−GRF+
L (t) dt

Dtotal = 100% · 1
100I

∫ 100

0
GRF+

R((t+ 50) mod 100)−GRF+
L (t) dt

(7.2)

70



7.1. Measures in PerPedes

The differences compare the left positive GRF to the right positive GRF. Optimally,
left and right leg move precisely the same, but the movement is offset by 50% of the
gait cycle. Shifting the data by 50% GC allows us to compare the forces between both
sides. Each value represents the mean difference between left and right forces over the
respective interval, normalized with regard to the maximum possible difference I of forces
in the whole gait cycle. If left and shifted right forces are equal across their respective
ranges, the difference is zero. Since positive GRFs are compared, existing negative forces
are treated as zero. A difference of ±100%, as the worst case, states that the average
difference over the interval corresponds exactly to the maximum occurring difference in
the gait cycle. Meaning that the largest difference is actually happening in the respective
interval. If one limb is substantially weaker than the other one, then Dtotal is negative
for a stronger left leg and positive for a stronger right leg. Similarly, Dstance and Dswing
indicate whether the left or right leg is more active during swing or stance phase. Note
that all metrics are measured with respect to the machine’s gait cycle, since the machine’s
gait cycle is clearly defined with fixed interval lengths. The defined metrics are applied
in the context of patient instructions in Section 8.4.1.

7.1.3 Gait Discrepancy

As mentioned in Section 6.5.3, the system calculates standard gait events in order to
measure and then further visualize (Section 8.6) the accuracy of our GED algorithm. If
all gait events agree on the same location, the events’ range of fluctuation is low and the
accuracy is high. On the other hand, if standard gait events are spread out and have a
low agreement, the gait pattern does not follow the standard definitions. Therefore, the
range of fluctuation can be used to measure the discrepancy between standard gait and
observed gait.

For each gait event (HSL, HSR, TOL, TOR) in every gait cycle, the range of fluctuation
is determined. This range is called gait discrepancy (GD), expressed in percent of the
gait cycle and defined as follows:

HSall,{L,R} = {HS,HS1,HS2,HS3,HS4,HS5}{L,R} (7.3)
TOall,{L,R} = {TO,TO1,TO2,TO3,TO4}{L,R} (7.4)

GDHSL = max(HSall,L)−min(HSall,L) (7.5)
GDHSR = max(HSall,R)−min(HSall,R) (7.6)
GDTOL = max(TOall,L)−min(TOall,L) (7.7)
GDTOR = max(TOall,R)−min(TOall,R) (7.8)

The set HSall,{L,R} contains the time of occurrence within the machine’s gait cycle of
our algorithm’s heel strike (HS), and the standard algorithms’ heel strikes (HS1 to HS5),
for left and right side respectively. The set TOall,{L,R} is defined similarly for toe off
events. Each GD measures the time span between earliest (min(HSall,{L,R})) and latest
(max(HSall,{L,R})) occurrence of the respective event. The GD is zero if all respective
gait events occur at the same time, otherwise GD is strictly positive. We make use of
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GD in Chapter 9 to illustrate whether or not gait patterns follow the standard definition
of walking.

7.2 Symmetry Measures
As discussed in Section 3.3, symmetry measures can help to evaluate a subject’s perfor-
mance, give an indication on existing disabilities, and document the therapy’s progress.
Our system provides all symmetry measures listed in Table 3.1 for the spatiotemporal pa-
rameters step length, swing time, and stance time. These parameters have been identified
[PGB+10] to be most useful in the context of gait symmetry with stroke patients.

In the following, we discuss three symmetry parameters, derived from the subject’s
dynamic gaitogram (Sections 2.4, 5.4.2). These parameters are used in gait analysis
[KF15], [KDFA13] and are based on the gaitogram’s central intersection point. Its
location is an indicator for gait symmetry. Symmetrical timing and movement of left
and right limbs results in a symmetrical gaitogram with the intersection point exactly
centered in ML and AP direction.

The Gaitogram’s Central Intersection Point

The gaitogram’s central intersection point is an intersection between the two CoP
trajectories during the double support phases (highlighted in green in Figure 7.1) of one
gait cycle. The intersection needs to be located between the HS event of one limb and
the following TO event of the contralateral limb. Given the CoP’s data points Pi and the
connecting line segments Lj = PjPj−1, we can find all intersections in the gaitogram by
checking overlaps between every two non-adjacent line segments. An intersection point
between two line segments can be calculated by expressing both segments in parameterized
form and then solve for the two unknown parameters in a system of two linear equations
(compare to Lamothe [Lam99]). A healthy subject’s gaitogram, measured on a treadmill
has exactly one intersection point (Figure 7.1a). In our setup, the gaitogram might have
multiple intersections or none at all. Since the subject is stabilized by a support harness,
the subject is able to lift one or both feet at arbitrary points in time during the gait cycle.
Doing so leads to distortions in the gaitogram, resulting in no intersections (Figure 7.1b)
or additional ones (Figures 7.1c, 7.1d).

A good heuristic for finding the intersection point without the need of gait events is to
assume that the correct intersection point is the one closest to the central axis between
both feet. The central axis is located exactly in the center of the gaitogram in ML
direction. In general, this heuristic holds well for standard cases, but might fail in highly
distorted gaitograms (Figure 7.1d). By introducing the additional constraint of restricting
the search for a valid intersection point to the paths between HS and TO events, we can
reliably identify the correct intersection in the gaitogram, if one exists.

The central intersection point must not be confused with the midpoint (Section 6.3.2).
The midpoint exists for each weight transfer and marks the data point closest to the weight
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transfer’s geometric center. Contrarily, the central intersection point is the intersection
between the trajectories of exactly two weight transfers in a gait cycle.

ML

A
P

(a) One intersection.
ML

A
P

(b) No intersection.

ML

A
P

(c) Multiple intersections.
ML

A
P

closest

correct

(d) Not closest intersection.

Figure 7.1: Intersection points in dynamic gaitograms. The images show the CoP’s data
points Pi (black dots), the central axis (vertical blue line), intersections of the gaitogram’s
line segments (red circles), and the closest intersection (green circle) to the central axis.
If gait events are computable, the correct intersection point should be located at the
closest crossing to the central axis of the two trajectories (highlighted in green) between
HS and TO events.
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The Gaitogram’s Symmetry Measures

The gaitogram’s central intersection point allows us to extract three symmetry parameters
[KF15], [KDFA13] over N gait cycles:

1. AP variability [mm]: The standard deviation of the N central intersection points
along the AP axis.

2. ML variability [mm]: The standard deviation of the N central intersection points
along the ML axis.

3. ML symmetry [%]: The mean normalized shift of the N central intersection
points along the ML axis, away from the central axis.

Figure 7.2 shows two subjects with low and high variability in their respective central
intersection points in both ML and AP direction. Low variability implies that the subject
is able to perform repetitive movements throughout multiple gait cycles with higher
precision. Although a large variability does not necessarily indicate a disability, Kalron
and Frid [KF15] observed a correlation between cerebellar impairment and a gaitogram’s
variability, especially in AP direction. They found that variability can be used to estimate
the severity of neurological impairment in the context of patients with multiple sclerosis.

ML symmetry relates to the offset of the central intersection point to the central axis. As
demonstrated in Figure 7.3, the central intersection point can have a negative offset ∆x
to the left, no offset (∆x = 0), or a positive offset to the right of the central axis. The ML
symmetry, as defined in the literature [KF15] corresponds to the offset ∆x. In contrast,
we normalize the ML symmetry to the range ±100% by calculating ∆x

w/2 . Here, w refers
to the distance between outermost left and outermost right point of the CoP’s trajectory
of the corresponding gait cycle. By normalizing the offset ∆x with respect to w/2, one
can compare ML symmetry between different individuals. The original definition of ML
symmetry does not take into account the different step widths per person or gait cycle
and is given in mm.
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(AP): 4.8 mm
(ML): 4.0 mm

Variability                        
Variability                        

(AP): 15.9 mm
(ML): 10.3 mm

Variability                         
Variability                         

ML

A
P

ML

A
P

Figure 7.2: Central intersection point variability. Comparison between two test subjects
with low (left) and high (right) variability with respect to their gaitogram’s central
intersection points (black dots). All intersections occur inside their respective green
shaded area. The left subject was able to repeat the same movements over 17 gait cycles
with higher precision, indicated by the lower AP and ML variabilities.
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Figure 7.3: ML symmetry in gaitograms. The central intersection point’s shift ∆x in
lateral direction, away from the central axis (vertical blue line), defines the ML symmetry.
The example images from left to right show a left shift (∆x < 0), a perfect symmetry
(∆x = 0), and a right shift (∆x > 0) respectively.
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CHAPTER 8
Visualization

This chapter introduces the user interface of our system. It can be used by therapists
during rehabilitation training as well as medical experts for gait analysis. Known
graphical elements, like the gaitogram and force visualizations have been integrated.
Novel additions, particularly useful within the PerPedes system have been developed.
The system is designed to support decision-making both during training with the patient,
as well as after each training session by providing statistical data.
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8.1 General Considerations

8.1.1 Colors and Themes

The user may choose to visualize the system with a light or dark theme. The light theme,
using a positive polarity (dark text on white background) increases overall contrast.
Hall and Hanna [HH04] compared different studies in the context of readability and
contrast. They found conflicting results, but recommend black text on white background
for improved readability. Buchner and Baumgartner [BB07] also found that proofreading
performance is improved with dark text on light background in contrast to reading light
text against dark background.

The dark theme uses negative polarity (light text on dark background). While a dark
theme consumes less energy with some screen technologies (e.g. OLEDs), there are no
other known advantages backed up by scientific studies. Nevertheless, in recent years
“dark mode” has become a trend among users and designers [Cum19], allegedly reducing
eye strain.

Throughout the whole application we follow a consistent color scheme. We use colors
orange and blue opposing each other on the color wheel (Figure 8.1a) for the left and right
leg respectively. The color magenta, located halfway between blue and orange is used as a
visual representation for the CoP’s trajectory. Indicators representing a rating (good/bad)
are by common convention visualized with green/red colors (see Section 8.4.2). In general,
the same colors are used for both light and dark themes, although the luminance of color
blue has been increased when using the dark theme for better contrast (Figure 8.1b). We
are aware that different research groups and medical personnel use different color schemes
(e.g. red for the left leg and green for the right leg). Our system has been designed to
easily change the colors to a familiar setting for the individual user.

Shieh and Lin [SL00] concluded in a study that blue-on-yellow text was the subjects’ most
preferred color combination and resulted in the best visual identification performance.
This reaffirms our color choice of using high contrast colors for the left and right side of
the body.
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(a) Color wheel. Image adapted from Shutterstock [Shu19] (b) Hex color codes

Figure 8.1: Color scheme for the user interface. A color wheel with the positions of the
main colors (a). The used colors with their hex color codes in the context of light and
dark themes (b).

8.1.2 Live Perspective vs. Analysis Perspective

Our system is separated into two major areas, called perspectives. The live perspective
presents current data streamed from the PerPedes machine during a therapy session and
puts the live data into context of the past eight gait cycles. Contrarily, the analysis
perspective allows the user to navigate the whole recorded data stream of the session
and provide analytic tools for some chosen number of gait cycles.

While the subject is training in the PerPedes system, the therapist needs quick access to
information regarding the subject’s performance. The main focus of the live perspective is
showing information through visualizations. Metrics and statistics are not presented with
numbers, but using visuals and minimal textual information (e.g. patient instructions,
Section 8.4.1). The therapist’s attention is with the patient, while auxiliary information
is provided by our system in an easy to grasp fashion.

In contrast, the analysis perspective provides aggregated data over multiple gait cycles.
The focus is on gait events and statistics. It can be used to measure the overall performance
of the subject, analyze repeatability of movements, and identify potential problems, like
asymmetrical gait, foot placement, or timing of gait events. The analysis perspective is
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expected to be used by the therapist or medical personnel (e.g. doctors) after a therapy
session to obtain detail information about the subject’s performance. Especially the
generated statistical data is of interest for the comparison between different therapy
sessions or subjects.

8.1.3 Panels

Each perspective is further subdivided into graphical elements, called panels. The live
perspective (Figure 8.2a) contains:

A The pressure distribution panel (Section 8.2) with

A1 gaitogram (Section 8.2.1) and

A2 pressure plates (Section 8.2.2)

B The ground reaction force panel (Section 8.3)

C The patient status information panel (Section 8.4) with

C1 patient instructions (Section 8.4.1) and

C2 visual indicators (Section 8.4.2)

D The 3D representation panel (Section 8.5)

The analysis perspective (Figure 8.2b) contains four panels as well. Additionally to the
pressure distribution and ground reaction force panels, it contains:

E The gait event consistency panel (Section 8.6)

F The statistics panel (Section 8.7)

While both perspectives share the pressure distribution and the ground reaction force
panels, their respective content differs. The live perspective always displays the latest
available data, streamed from the PerPedes machine, while the analysis perspective shows
a user selected range of gait cycle data from the recorded data stream.
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(a) Live perspective

(b) Analysis perspective

Figure 8.2: [Screenshots with annotations] User interface using a light theme.
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(a) Live perspective

(b) Analysis perspective

Figure 8.3: [Screenshots] User interface using a dark theme. Same content as in Figure 8.2.
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8.2 Pressure Distribution Panel
The pressure distribution panel contains two graphical elements displayed side by side.
These elements are the gaitogram and the pressure plates. Both graphical elements are
either shown in a static or dynamic frame of reference (FoR) (compare with Section 2.4
and Section 5.4.2). The dynamic FoR incorporates each pressure plate’s movement, while
the static FoR explicitly excludes the movement.

The static FoR is used to evaluate the utilization of each foot or analyze specific gait
patterns, like tip toe or calcaneal gait [WCH+99]. More commonly used with treadmills
[RCS+14], [RCC+08], [TCvDR19] is what we call dynamic FoR. It visualizes the pressure
points including the machine’s movements. Using the dynamic FoR, one can infer gait
symmetry (Section 7.2) and how well the subject synchronizes his/her movement with the
machine (Section 8.2.1). Figure 8.4 gives examples presenting the same data at the same
time in different frames of reference. In both images the focus in on the pressure plates,
while the gaitogram is presented in the lower right corner of the pressure distribution
panel. The user can change the focus to be on the gaitogram instead with a simple click on
the graphical element. This exchanges the graphical elements’ positions, giving focus to
the gaitogram and presenting the pressure plates in the lower right corner. Another click
on the focused element will maximize its space while minimizing the other. The user can
select which visualization is relevant to him/her in any given situation. Figure 8.5 shows
all possible transitions between the graphical elements within the pressure distribution
panel.

(a) Dynamic FoR (b) Static FoR

Figure 8.4: [Screenshots] Pressure Distribution Panel. Dynamic and static FoR. The user
can choose to represent the data either with pressure plate movement (a) or with fixed
pressure plates (b).
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Figure 8.5: [Screenshots with annotations] Pressure Distribution Panel. UI transitions. The
user can choose to focus on either the pressure plates or the gaitogram. Both elements
are visible at the same time with clear priority for one while minimizing the other (top
row) or shared space for both (bottom row).

8.2.1 The Gaitogram Visualization

The gaitogram shows the CoP’s trajectory in either static or dynamic FoR for one or
more gait cycles (Section 2.4). The gaitogram in a static FoR is shown with a depiction
of footprints, while the gaitogram for a dynamic FoR is presented without footprints.
This is consistently used in the graphical user interface to differentiate between both
representations.

In the following, this section explains

• the gaitogram in the analysis perspective

• enhancements to the gaitogram in the live perspective

• interpretation of gaitograms in PerPedes

The Gaitogram in the Analysis Perspective

The gaitogram in the analysis perspective shows the CoP’s trajectory in a static or
dynamic FoR for a user-selected gait cycle count. This visualization depicts the variance
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in movement and clustering of the gait events at specific locations. This demonstrates
whether or not the subject is able to repeat the same movements throughout multiple
gait cycles. With each gait cycle, four of the subject’s gait events are depicted, i.e. HSL,
HSR, TOL, and TOR. HS events are shown as squares, while TO events are shown as
circles. The events are colored as usual (Section 8.1.1) for the respective left and right
side. See Figure 8.6 for an example.

(a) Dynamic FoR (b) Static FoR

Figure 8.6: [Screenshots] Gaitograms in the analysis perspective. Shown are the CoP’s
trajectory (magenta), HSL (orange square), HSR (blue square), TOL (orange circle),
TOR (blue circle), and the center of the PerPedes machine in ML direction (black line).
Both gaitograms show the same data of 58 gait cycles in different FoRs.

Enhancements for the Gaitogram Visualization

The gaitogram in the literature only shows the CoP’s trajectory, optionally with event
visualization (e.g. in Roerdink et al. [RCS+14]). The PerPedes system defines an
optimal gait cycle through its moving pressure plates. It is possible to show the subject’s
movement in relation to the machine’s movement in an easy to grasp fashion within the
gaitogram. We propose two enhancements for the gaitogram. The first enhancement
is to visualize the trajectory of the left and right pressure points during the machine’s
single support stance phases. These trajectories are called stance lines. This will allow
the visual inspection of the subject’s timing with respect to the machine’s optimal timing.
Furthermore, one can evaluate if the subject correctly attempts to lift his/her feet or
if the feet are being dragged. The second enhancement is to calculate and visualize
the mean CoP’s trajectory and mean stance lines across multiple gait cycles. In the
live perspective, the gaitogram shows the past eight gait cycles while applying both
enhancements.
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Stance Line Visualization

The machine’s single support stance phase is defined as the range [10, 50)% GC for the
left foot and as the range [60, 100)% GC for the right foot. If the subject’s timing is
perfectly synchronized with the machine’s movement, the subject’s weight is entirely on
the respective foot during the machine’s single support stance phases and weight transfers
only occur during the double support phases (i.e. [0, 10)% GC and [50, 60)% GC). By
showing the left and the right pressure point’s trajectories only during the machine’s
respective single support stance phase, stance lines are created.

Interpretation of the Dynamic Gaitogram

The CoP’s trajectory (static or dynamic) will perfectly coincide with the stance lines if
the full weight is on the respective foot during the machine’s single support stance phase.
More precisely, this means CoP{s,d} = PL during [10, 50)% GC and CoP{s,d} = PR

during [60, 100)% GC (compare with Section 5.4). Under optimal circumstances, the
CoP’s trajectory will only diverge from the stance lines during the double support phases.
Figure 8.7 shows a dynamic gaitogram for one gait cycle. In this optimal situation, the
subject’s gait cycle is perfectly synchronized with the machine’s gait cycle. Weight is
transferred exactly during the machine’s double support phases.

Anterior

Posterior

Left Right

Figure 8.7: The perfect dynamic gaitogram from synthetic data. Machine and human
subject move in unison.

Our recorded test data has shown that test subjects rarely move perfectly synchronized
with the machine. Common issues are initiating the weight transfer too early or an
incomplete weight transfer, i.e. dragging the feet during the swing phase. In the following,
it is shown how to interpret the dynamic gaitogram in cases where the subject is not
moving synchronized with the machine. Figure 8.8 provides an overview of common
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phenomena occurring during training on PerPedes, encoded in the gaitogram. The right
side shows that the full body weight is on the right foot during the machine’s single
support stance phase. This is shown by the CoP’s trajectory (magenta) coinciding with
the right stance line (blue). The stance line ends with the beginning of the machine’s
double support phase. During double support, the right pressure plate is still moving
posterior (compare with Section 4.2). In case the subject’s weight is still on the right
foot and the weight transfer to the left starts (HSL) too late, it results in the visible
offset ∆a between the end of the stance line and the event location. Alternatively, the
left heel strike might occur even later, after the right pressure plate moves forward again.
This results in an additional non-zero offset ∆b. During the weight transfer, the CoP
moves to the left side and the weight transfer is completed with the right toe off event.
In the given example, TOR occurs too late (during the machine’s single stance support
phase), resulting in the offset ∆c. Furthermore, the right foot is not completely lifted
off its pressure plate and exerts some force (i.e. foot dragging), resulting in an offset
(hatched area) between CoP and left stance line. Subsequently, the weight transfer to the
right (HSR) starts during the machine’s single support stance phase and therefore too
early, indicated by ∆d. It also finishes too early (TOL), before the left single support
stance phase starts (∆e). If in any case the weight transfer to the right finishes even
earlier, while the right pressure plate is moving forward, the offset ∆f will be non-zero.

R

or

or

Anterior

Posterior

Left

Right

Figure 8.8: The dynamic gaitogram explained with synthetic data. Possible scenarios
when training on PerPedes.
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Mean Trajectories

The second enhancement for the gaitogram is to create mean trajectories. Visualizing a
gaitogram over multiple gait cycles results in multiple thin lines for the CoP’s trajectory,
as well as left and right stance lines. These thin lines might intersect or lay on top of
each other. The resulting image can be hard to interpret, increasing in complexity with
the amount of gait cycles. Especially the static gaitogram’s readability might suffer, since
movement happens on a smaller scale between feet than during gait (Figure 8.9).

As with statistical values, providing an average (mean) across trajectories can help
identify tendencies in the subject’s movements. The creation of mean trajectories is
straightforward within in the PerPedes system. The machine’s gait cycle has a well-
defined start and end. A trajectory’s coordinates can be sampled at regularly spaced
points in time across one machine’s gait cycle. For every gait cycle, this creates a set
of samples of equal size. The mean trajectory is then an average across these sets. We
create and visualize mean trajectories for the CoP, left, and right stance lines.

Figure 8.9: [Screenshot] Static gaitogram for 50 gait cycles with mean trajectories. The
mean trajectories can improve identifying trends.

Gaitogram Examples

In Figure 8.10 participants are not moving perfectly synchronized with the machine.
Offsets are marked in the images according to the notation introduced in Figure 8.8 and
with respect to the mean trajectories. The following observations refer to the average
behavior of each subject and do not necessarily apply to every gait cycle. The gait
cycle events are not shown in these gaitograms. Therefore, a precise statement on how
much the gait differs from an optimal one cannot be inferred from a visual inspection
alone. Nonetheless, the average gait events are approximately located at the corners of
the dynamic CoP’s average trajectory, while straight lines between left and right side
highlight the weight transfers.
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Figure 8.10a shows symmetrical gait, although on average the weight is transferred too
early (∆d1,∆d2), while finishing too late (∆c1,∆c2). This means that the subject is
spending too much time in the double support phases.

In Figure 8.10b the right foot exerts pressure (hatched area 1 ) before the right heel
strike starts the weight transfer. Additionally, the left foot is not fully lifted and exerts
pressure during the right foot’s stance phase. This results in a visible offset (hatched
area 2 ) between the CoP’s trajectory and the right stance line.

Figure 8.10c demonstrates a strong asymmetrical gait with minimal weight transfers to
the right side. In this case, the CoP’s mean trajectory barely crosses the center of the
PerPedes machine (black line).

In Figure 8.10d the weight transfer to the left side starts too early (∆d2) and subsequently
finishes too early as well (∆e1). Furthermore, the right heel strike occurs during the left
single support gait phase and therefore too early (∆d1).

(a) (b)

(c) (d)

Figure 8.10: [Screenshots with annotations] Dynamic gaitograms with mean trajectories.
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8.2.2 The Pressure Plate Visualization

As we have established in Section 5.4, our system calculates the pressure point for the left
(PL) and the right (PR) foot plate as well as the CoP as a weighted average between those
two. In order to visualize their respective trajectory, the locations of the last 1.5 seconds
of each pressure point and the last 3 seconds of the CoP are shown in the pressure plate
visualization. The locations are linearly connected and the alpha value is varied from
fully opaque to fully transparent over the respective time spans. Additionally, for left
and right pressure points the measured pressure’s intensity is indicated by horizontal
bars. Both thickness and length are varied according to the ratio of weight measured in
relation to the total amount of weight on both pressure plates. More weight equals a
longer and thicker bar. A pressure point measured with a weight below a threshold of
four kilograms is deemed to be unreliable and visualized in gray.

In Figure 8.11, a comparison between the static and dynamic FoR is shown throughout
the gait cycle. In both frames of reference one can see that the CoP is moving to the
right side before the 40% mark of the machine’s gait cycle. Ideally the start of the
weight transfer with the right heel strike should occur at 50% GC. The weight transfer is
completed with the left toe off at 60% GC, which is optimal. Although the whole length
of the left foot is utilized (Figure 8.11a), the static gaitogram for the whole gait cycle
(Figure 8.11b) reveals that the stance lines are located mostly at the heel. The dynamic
gaitogram for the whole gait cycle (Figure 8.11d) reveals that both heel strikes occur too
early (∆d1,∆d2), right toe off occurs too late (∆c1), while left toe off is timed precisely.
Notations according to Figure 8.8.
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(a) The static FoR reveals the utilization of each foot. (b)

(c) The dynamic FoR includes the pressure plates movement. (d)

Figure 8.11: Pressure plate visualization throughout the gait cycle. Dynamic FoR vs. static FoR. One complete gait cycle
(0%− 100%) is displayed in 20% increments. The resulting gaitograms are placed to the right. Pressure magnitude is shown
with horizontal bars. Stronger pressure is mapped to a longer bar. Older contacts fade out over time. Gaitograms (b) and (d)
show the single support stance lines and the CoP’s progression over one gait cycle.

91



8. Visualization

8.3 Ground Reaction Force Panel
The ground reaction force panel visualizes the left and right vertical GRFs for one
complete gait cycle of the machine. The horizontal axis indicates the machine’s gait
cycle. The vertical axis, by common convention, is the vertical GRF normalized to the
body weight in percent. While it is common during normal walking/running to measure
forces above 100% body weight, this threshold is typically not exceeded in PerPedes.
This is due to the fact that in a typical setup the subject is wearing a harness and part
of the weight is supported by the equipment. Another distinctive feature is the possible
occurrence of negative forces. These forces occur while trying to lift the feet and pulling
on the foot straps, therefore creating negative readings at the force sensors.

The current position in the gait cycle is displayed with a progress indicator (vertical
bar), moving from left to right, sweeping over old data while continuously updating the
plot. In the live perspective the current force readings are plotted with dotted lines, the
means (left/right) of the past eight gait cycles are shown with solid lines and surrounded
by ± one standard deviation (colored areas). For context, the plot is extended beyond
0% GC and 100% GC by one quarter of a gait cycle (i.e. 25% GC). This is especially
useful to analyze the behavior around the 0% GC / 100% GC mark, when the left heel
strike is supposed to occur. Figure 8.12a gives an example with descriptive annotations.
The machine’s gait events at the top indicate the optimal occurrences of gait events in
the machine’s gait cycle. They are placed at 0% GC, 10% GC, 50% GC, and 60% GC,
respectively.

The user can optionally choose to shift the force plot of the right side by 50% GC modulo
100% GC. This creates a visualization with synchronized left and right force readings
(Figure 8.12b). The shift merges left and right gait events. The optimal occurrence for
left and right heel strikes in the machine’s gait cycle is then at 0% GC, while toe off
events happen 60% GC afterwards. Synchronizing the forces splits the progress indicator
into two indicators, separated by 50% GC. This occurs since the data is now progressing
at two different locations for left and right forces within the visualization.

This synchronized visualization can be used for a direct comparison of left and right
forces over time, in order to identify a one-sided weakness. Especially with patients
suffering from hemiparesis after a stroke, comparing the difference in strength between
both sides can be used to classify the severity of the disability. Furthermore, the change
in this difference throughout therapy can be used to document the patient’s progress.
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(a) Chronological

(b) Synchronized

Figure 8.12: [Screenshots with annotations] Vertical GRF visualization - chronological vs.
synchronized. The current forces (dotted line), mean (solid line) and standard deviation
(colored area) are plotted for left and right leg, respectively. Both (a) and (b) contain
identical data, but (b) shifts the right GRF visualization by 50% GC.

8.3.1 Difference Plot

When synchronizing left and right forces, it is possible to highlight the force difference in a
separate plot. This so created difference plot shows which side (left, right) is substantially
stronger during the machine’s gait cycle phases (double support, stance, or swing). The
difference is created for the forces occurring in the current gait cycle. In order to have a
meaningful visualization, the magnitude of the force difference needs to be normalized
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to be within [−100, 100]%. An obvious choice for normalization is using the largest
occurring absolute difference ∆d between left and right forces over the whole gait cycle:

∆d = max(|GRFL(t)−GRFR(t)|),∀t ∈ [0, 100) (8.1)

DiffA(t) = GRFL(t)−GRFR(t)
∆d (8.2)

Although, this would disproportionately highlight small differences in otherwise equal
force measurements (Figure 8.13, Difference A). Hence, we choose to normalize with
respect to the maximally possible difference between left and right forces over the whole
gait cycle:

s1 = max(GRFL(t))−min(GRFR(t)),∀t ∈ [0, 100) (8.3)
s2 = max(GRFR(t))−min(GRFL(t)), ∀t ∈ [0, 100) (8.4)

∆max = max(s1, s2) (8.5)

DiffB(t) = 100% · GRFL(t)−GRFR(t)
∆max (8.6)

Doing so has the advantage of suppressing small fluctuations while highlighting severe
differences between left and right forces (Figure 8.13, Difference B).

Figure 8.13: [Screenshot with annotations] Vertical GRF difference - Comparison between
two variants. Difference A: The difference between left and right forces can be normalized
with respect to the largest occurring absolute difference ∆d. Difference B: Alternatively,
normalization can be done with respect to the theoretical maximum difference ∆max.

8.3.2 Event Visualization with Ground Reaction Forces

The analysis perspective shows the subject’s gait events in the context of vertical ground
reaction forces. In contrast to the live perspective, it simultaneously shows multiple
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gait cycles overlaid with the identified gait events. Furthermore, the graph shows up to
−50% GC of the previous gait cycle as reference and is extended beyond 100% GC by
half of the current gait cycle (i.e. 50% GC). This visualization can be used to analyze
the subject’s consistency in force application and timing.

In Figure 8.14, the subject shows consistent performance throughout the session with
gait events clustered and clearly separated. On average, the subject’s left heel strikes
(orange squares) occur slightly before the expected machine event (marked with HSL).
The subject’s right heel strikes (blue squares) are clustered around the expected time of
50% GC (marked with HSR). Left and right toe off events (circles) are timed around the
expected machine gait events (TOR, TOL) with only small variances.

Figure 8.14: [Screenshot] Vertical GRF visualization with gait events. This example shows
15 gait cycles with the subject’s identified gait events.

8.4 Patient Status Information Panel
The patient status information panel contains data related to the current performance of
the patient in PerPedes. It consists of two parts. First of all, it contains a visualization
with instructions to improve the patient’s performance. Secondly, color-coded statistics
are presented to the user, indicating the patient’s current status.

8.4.1 Patient Instructions

During a live rehabilitation session, the therapist needs to be able to rate the patient’s
current performance. The question »How is the patient doing?« can be answered quickly
with the vertical GRF and gaitogram visualizations. While these visualizations help
in assessing whether or not problems exist, they cannot provide a quick answer to
the question »How could the patient improve?«. Our system has knowledge about
the patient’s current movements as well as the ground truth, given by the machine’s
movements. Therefore, the difference in the timings between patient and machine can
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be evaluated. Furthermore, patient-specific performance measures are generated by
comparing data from the left and the right half of the body. By doing so, the system can
spot individual differences between, e.g. paraplegic and non-paraplegic sides and provide
personalized suggestions for improvement.

In the following section we introduce a novel visualization, which is targeted at therapists,
and contains instructions for the patient to improve his or her performance. The aim of
this visualization is to display easily comprehensible commands while being as detailed
as possible. The visualization shows a total of six possible instructions per foot, without
overwhelming the therapist. It is partitioned into a left and right side for each foot
respectively. Furthermore, it is also partitioned into an upper half and lower half, dealing
with the lifting up and pushing down of the respective foot. The generated commands
are timing-based (i.e. earlier, longer) and force-based (i.e. harder). Timings are based
on the difference between patient and machine movements, while forces are entirely
patient-dependent. Force-based statistics compare left and right feet performances, while
timings compare to the machine.

Figure 8.15 gives an example of generated patient instructions. The patient’s left foot
is not lifted properly. Both the timing, as well as the amount of force during lifting is
insufficient. Therefore, the patient’s first priority should be to concentrate on the left
foot. Subsequently, the right foot should be pushed down stronger during the stance
phase while lifting it for an extended period of time during the swing phase.

Figure 8.15: [Screenshot] System generated patient instructions. During a therapy
session, the system generates suggestions for the therapist to quickly improve a patient’s
performance.

Timing-based Instructions

Each patient instruction is coupled to one or more criteria (see Table 8.1). Timing-
based instructions are triggered as soon as the patient’s event (e.g. HSR) occurs at a
substantially different time than the machine’s event. As an example, the patient’s TOL
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event should occur at around 60% GC. If the actual TOL event occurs substantially
earlier, then the patient is instructed to lift the left foot later, or equivalently to push it
down for a longer time.

Each patient has a certain variety in his or her gait, leading to imprecise timings of
the patient’s gait events. An issue is to determine how much discrepancy between
machine and patient events is tolerable. In Section 6.2 we define the theoretical maximum
discrepancy to be between [−72, 28]% GC. While these are reasonable bounds within
which an event should be located, it does not specify which timing offset should trigger
instructions for correction. We also established that an offset of −22% GC or +28% GC
equals standing in one spot without progression. To narrow down the allowed discrepancy
even more, we take a look at the gait cycle once more (Figure 2.1). The progression of
events in the optimal gait cycle is rather quick. The HS event starts the double support
subphase, ending only 10% GC later with the opposite foot’s TO event. We assume
that the event timings of healthy individuals are at least in the same subphase as the
machine’s gait cycle and therefore not more than 10% GC offset (10% GC is the length
of the double support phase). Using these assumptions and the available test data, we
set an empirically defined threshold of 8% GC as allowed discrepancy between patient
and machine events. Hence, timing-based patient instructions are displayed only if a
patient’s event is off by more than ±8% GC from the machine’s event.

Force-based Instructions

In contrast to timings, force-based instructions are based on the comparison of the amount
of force exerted by the patient in major gait cycle phases (i.e. swing and stance phase)
and on the difference between the left and the right leg. The underlying assumption is
that a healthy individual exerts the same amount of force on the left and on the right side.
If there are measurable differences, then the patient can either improve with selective
countermeasures or an existing disability prevents equal performance on both sides.

Whether or not a patient exerts enough force during the stance phase can be decided
by comparing the difference between left and right limb. Patients with hemiparesis or
other one-sided impairments are especially suitable for performance comparisons. The
non-impaired side acts as a ground truth of achievable activity, while the other side can
be put into relation accordingly. If one side is substantially weaker than the other one,
instructions for improvement are triggered. Section 7.1.2 introduces metrics, summarized
here for convenience:

• Swing ratio Rswing - The ratio of force applied in the swing phase in relation to
the whole gait cycle.

• Stance difference Dstance - The force difference between left and right leg in the
stance phase.

• Swing difference Dswing - The force difference between left and right leg in the
swing phase.
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In an optimal scenario, the swing ratio is zero, meaning the foot is lifted off the ground
and exerts no positive forces during the swing phase. A patient might not be able to
avoid exerting pressure during the swing phase, because of the foot straps or existing
disabilities. Therefore, an empirical threshold of 10% for the swing ratio has been chosen,
such that light pressure during the swing phase is permitted. In case this threshold is
exceeded, the instruction to improve lifting of the corresponding foot is displayed.

A difference of zero in Dstance or Dswing relates to an equal amount of force applied
during the respective stance or swing phase between left and right leg. If one of the
differences is substantially large, instructions to increase pushing or lifting the weaker leg
are presented to the user. Since our system is typically used for patients with one-sided
impairments, the difference threshold is set to a rather large value of 20%. This results
in instructions being triggered only when observing large force differences. They are
therefore only displayed in cases of severe impairment.

Instruction Criterion
Push longer TO occurs too early
Lift earlier TO occurs too late
Push earlier HS occurs too late
Lift longer HS occurs too early
Push harder Dstance larger than 20%
Lift harder Rswing larger than 10% OR Dswing larger than 20%

Table 8.1: Patient instructions and the corresponding criteria. Timing-based instructions
are triggered if they occur 8% GC earlier or 8% GC later than the ground truth machine
event. If the force difference during the stance phase between both legs exceeds 20%,
more weight needs to be shifted onto the weaker leg. The patient is instructed to lift a
leg more, if this leg is dragged (high swing ratio) or lifted less than the other leg (high
swing difference).

8.4.2 Visual Indicators

Therapists during a training session must be able to quickly assess the patient’s current
performance. The gaitogram (Section 8.2.1) illustrates symmetry, timing, and utilization
of each foot. The ground reaction force panel depicts the repeatability of force application
and differences between left and right side throughout the gait cycle. The statistics table
(Section 8.7) shows various measures in detail, but cannot be used for a quick assessment
of the subject’s status. Therefore, we visualize two selected measures to support the
therapist in his/her evaluation of the current therapy.

Our system provides a balance indicator, visualizing if a subject exerts more force on
the left or the right side. The underlying data is the Dtotal metric as introduced in
Section 7.1.2, measuring the force distribution between both legs over a whole gait cycle.
The balance indicator’s presentation follows the system-wide applied color coding scheme.
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The second indicator shows how much of the subject’s weight is carried by the support
harness. It is equal to the ratio of the support load, carried by the suspension system,
in relation to the current body weight estimate (Section 5.2). Subjects unable to carry
their own weight while walking will show a higher support ratio. Additionally, subjects
who are unable to cope with the current therapy settings (e.g. speed, step length) will
more likely rely on the suspension system to carry their weight. In situations when the
support ratio is low, it is likely that the subject is comfortable with carrying his/her own
weight during training.

Figure 8.16 gives an example for the visual indicators. The subject exerts slightly more
force on the left side, represented by the indicator moving away from the central position
to the left side of the bar. Furthermore, about 20% of the currently measured weight is
carried by the suspension system.

Figure 8.16: [Screenshot] Visual indicators. This visualization allows a quick assessment
of a subject’s balance and current weight support.

8.5 3D Representation Panel
The live perspective offers a 3D rendering of a gender neutral character during walking.
The character’s movement is synchronized with the current machine’s gait cycle by
simply mapping the animation’s keyframes to the current position in the gait cycle.
Since the animation is strictly coupled with the displayed data in the live perspective,
it helps the user to quickly understand which gait cycle phase is currently displayed.
Furthermore, since the technical setup uses computer network connections and therefore
introduces a possible latency, the animation helps to gauge the delay between real time
and visualization time. The character is embedded in a fully functional 3D web framework
(Section 1.5), therefore the user can choose to view the rendering from an arbitrary camera
perspective.
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(a) 0% GC (b) 10% GC (c) 30% GC (d) 50% GC (e) 60% GC (f) 80% GC (g) 100% GC

Figure 8.17: [Screenshots] 3D character movement throughout one gait cycle.

8.6 Gait Event Consistency Panel
The gait event consistency panel contains a graph plotting for each gait cycle the time
of occurrence of each gait event. Additionally, for each gait event and gait cycle, the
range of fluctuation is visualized. The range of fluctuation is determined by the standard
gait event definitions introduced in Section 6.5.3. If this range is small, algorithms agree
on the position of the gait event, otherwise there is high variance and little agreement.
Figure 8.18 shows an example, where gait cycles 11 and 12 are directly compared to
each other. In gait cycle 12, the GED algorithms agree on the event location of HSL
with little variance (small range of fluctuation). Contrary to this, in gait cycle 11, the
algorithms do not agree on a common HSL event location, represented by a larger range
of fluctuation. The dynamic gaitograms for both gait cycles are shown below the gait
event consistency panel. Our proposed HSL event is marked in green, the standard gait
events are marked in blue. On average over all gait cycles, the example shows that HSL
events occur too early (before the 0% GC mark), HSR events are well timed (around the
50% GC mark), while both left and right toe off events occur too late (after the 10% GC
and 60% GC mark respectively).

The gait event consistency panel can be used to verify our proposed GED algorithm.
For consistent movements, the detected events should also be consistent in their timely
occurrence. Additionally, the closer a participant’s gait is to normal gait, the more
agreement there should be between different gait algorithms, since these algorithms were
designed for GED in standard gait. This agreement is then expressed in a small range of
fluctuation, immediately visible to the user with this visualization.
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Figure 8.18: [Screenshots with annotations] The gait event consistency panel contains a line
chart for each of the subject’s gait events (TOL, HSR, TOR, HSL) with their respective
range of fluctuations, determined by standard gait event definitions. The horizontal axis
shows the gait cycles and the vertical axis depicts the time of occurrence.

8.7 Statistics Panel
The statistics panel in the analysis perspective presents multiple statistical values in
tabular form. An overview of the collected measures is shown in Table 8.2. Additionally
to this content, the symmetry index (SI), symmetry angle (SA), gait asymmetry (GA),
and symmetry ratio (SR), as discussed in Section 7.2, are calculated for step length,
swing time, and stance time parameters. For the sake of clarity, these symmetry measures
have been omitted in Table 8.2. Generally, the values are shown as mean (± standard
deviation). AP and ML variabilities are defined as standard deviations. The body weight
estimate is an average value over all available data and is treated as a system-wide valid
measure. Gait discrepancies show the range of fluctuation across all gait event definitions
and are averaged over the selected gait cycles.

In contrast to Table 8.2, the statistics panel used in our system additionally provides a
color coding for left/right statistical values. The color coding indicates the symmetry
of the parameter, or in other words which side is more dominant. Figure 8.19 shows
an example of the statistics panel for 49 gait cycles. For illustrative purposes, the
dynamic gaitogram for this data is shown next to the panel. The asymmetry of the
intersection point (20.2%) as well as the gaitogram indicate a strongly dominated left
gait. The differences also show stronger activity on the left side in the gait cycle phases
(Dstance = −63.6%, Dswing = −11.5%) and over the whole gait cycle (Dtotal = −42.9%).
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The subject starts the weight transfer to the left very early (Timing HSL = −15.6% GC
and ∆d2 in the gaitogram). This results in a short left step length of 234 mm. The
weight transfer also finished early (Timing TOR = −9.2% GC and ∆e1 in the gaitogram).
Contrarily, the weight transfer to the right is well timed, only slightly before the optimal
point in time (Timing HSR = −3.4% GC). This results in a larger step length on the right
(524 mm) and an overall longer left stance phase (2.5 s). The weight transfer to the right
is slow and finishes too late (Timing TOL = 7.1% GC and ∆c2 in the gaitogram). Stance
time on the right is therefore comparatively short (1.6 s). Notations in the gaitogram are
according to Figure 8.8 and with respect to the mean trajectories.

Measure Value Unit Description
Body Weight Estimate 81 kg Section 5.2
Ratio - Support 30.7 (±1.6) % 1
Step Length, Left 537 (±24) mm Section 7.1
Step Length, Right 523 (±28) mm — ” —
Stride Length 1060 (±28) mm — ” —
Swing Time, Left 0.9 (±0.2) s — ” —
Stance Time, Left 2.1 (±0.1) s — ” —
Swing Time, Right 0.8 (±0.1) s — ” —
Stance Time, Right 2.2 (±0.1) s — ” —
Double Support Time 1.3 (±0.1) s — ” —
ML Symmetry 14.5 (±8.8) % Section 7.2
AP Variability 10.4 mm — ” —
ML Variability 6 mm — ” —
Timing - Toe Off, Left (TTOL) 7 (±3.1) % GC 2
Timing - Toe Off, Right (TTOR) 11.1 (±2.5) % GC — ” —
Timing - Heel Strike, Left (THSL) -2.5 (±1.9) % GC — ” —
Timing - Heel Strike, Right (THSR) -3.1 (±2.5) % GC — ” —
Ratio - Force in Swing Phase, Left (Rswing,L) 13 (±4.1) % Section 7.1.2
Ratio - Force in Swing Phase, Right (Rswing,R) 9.5 (±3.8) % — ” —
Difference - Stance phase (Dstance) -3.4 (±6.2) % — ” —
Difference - Swing phase (Dswing) -4.9 (±6.3) % — ” —
Difference - Gait cycle (Dtotal) -4.1 (±5.4) % — ” —
Gait Discrepancy - Toe Off, Left 1.2 % GC Section 7.1.3
Gait Discrepancy - Toe Off, Right 0.9 % GC — ” —
Gait Discrepancy - Heel Strike, Left 3.4 % GC — ” —
Gait Discrepancy - Heel Strike, Right 5.2 % GC — ” —

Table 8.2: Statistics table example. This table shows statistical values over eight gait
cycles. 1 The support ratio corresponds to the fraction of support load WS to body
weight WB (Section 5.2). 2 Timing is the offset of the subject’s gait event to the
machine’s gait event, expressed in percentage of the gait cycle. A negative timing
indicates the subject’s event occurs before the machine’s event (Section 7.1.1).
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Figure 8.19: [Screenshots with annotations] Statistics panel example, additionally with the
dynamic gaitogram for reference.
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CHAPTER 9
Results

9.1 Test Data
The recording of test data has been done by the project partners on four different
occasions with the following test scenarios and recordings:

• Normal (active) walking (17 x)

• Only actively walking on the right side (17 x)

• Only actively walking on the left side (17 x)

• Avoiding movement (passive walking) (20 x)

• Walking backwards (1 x)

With a few exceptions, each recording contains around 50 gait cycles worth of data. The
predefined machine’s step length SLM (left/right) was set to 600 mm. The participant’s
resulting step length cannot exceed the range [−SLM ,SLM ]. The walking speed (cadence)
was fixed and set to 40 steps per minute. Test data was recorded at a frequency of 10 Hz,
i.e. a sampling rate of 100 ms. Walking backwards was performed with different settings,
as is mentioned in Section 9.4.2.

The following participants were involved:

• Seven healthy participants

• One participant with multiple sclerosis (MS)
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In the following sections we identify each recording with the participant’s identification
code (A−H) and a test number. For example, the second test recording of participant
B would be labeled as B2. The amount of recordings is different between participants:

• Participant A: 16 recordings (active 4, left 4, right 4, passive 3, backwards 1)

• Participant B: 8 recordings (active 2, left 2, right 2, passive 2)

• Participant C: 10 recordings (active 2, left 2, right 2, passive 4)

• Participant D: 10 recordings (active 2, left 2, right 2, passive 4)

• Participant E: 9 recordings (active 2, left 2, right 2, passive 3)

• Participant F : 4 recordings (active 1, left 1, right 1, passive 1)

• Participant G: 12 recordings (active 3, left 3, right 3, passive 2, therapy 1)

• Participant H: 4 recordings (active 1, left 1, right 1, passive 1)

Participant H with MS is discussed separately in Section 9.4.1. Walking backwards of
participant A is shown in Section 9.4.2. The therapy training session of participant G
can be found in Section 9.4.3.

9.2 Analysis
The analysis of the test data is split into two sections. Section 9.3 analyzes the test
results of the healthy participants. It discusses normal walking, and actively walking on
the left and right side, respectively. Section 9.4 concentrates on selected case studies. It
highlights important and conspicuous test cases. Additionally, it discusses some recordings
of passive walking to demonstrate the robustness of the GED algorithm. Passive walking
was originally recorded in the context of EEG analysis. The test cases were used to train
a classifier in order to differentiate the brain’s activity during active and passive walking.
Since we do not expect the results of passive walking to be meaningful in the context
of gait analysis, we excluded the majority of them from this thesis. Walking backwards
was chosen as a test case, since an earlier recording (D1) showed behavior reminiscent of
walking backwards. In order to verify this, the separate recording A16 was created as
a reference (Section 9.4.2). As it turned out (Section 9.4.7), test recording D1 indeed
contained sections, where the participant was walking backwards.

Gait Discrepancy

As discussed in Section 7.1.3, the GD (i.e. GDHSL,GDHSR,GDTOL,GDTOR) for each
gait event corresponds to the events’ range of fluctuation. It indicates the timespan
between the earliest and the latest occurring gait event of the respective kind. A large
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GD indicates that the algorithms do not agree on the same place of occurrence for an
event and this might indicate a non-standard gait pattern.

In the following results, we will, where appropriate, show the average gait discrepancy
over N gait cycles

GDavg = 1
N

N∑
i=1

(GDHSL + GDHSR + GDTOL + GDTOR) (9.1)

instead of the individual ones. This retains clarity and serves as a single indicator for the
agreement between different algorithms.

Sensitivity to Outliers

Gait discrepancy is the range defined by the earliest and latest occurrence of standard
gait events. It is therefore also susceptible to only one event definition being out of
place. Figure 9.1 shows an example where event TO4 has a large influence on the gait
discrepancy. As a reminder, TO4 is defined as the most anterior pressure point of the
lifting foot after the midpoint. In case there is no clear heel to toe pressure movement
along one foot, TO4 might be different from the actual TO event. To conclude, gait
discrepancy might indicate that a gait pattern differs from standard definitions, but does
not clearly indicate which behavior is responsible for the large deviations.

(a) Including TO4. GDTOL = 8.6% GC, GDTOR = 12.3% GC.

(b) Excluding TO4. GDTOL = 4.4% GC, GDTOR = 2.4% GC.

Figure 9.1: [Screenshots] Influence of one standard gait event on gait discrepancy. Test
recording G3. In this recording, TO4 differs from the other TO event definitions. This
nearly doubles the range of fluctuation for TOL and increases the range for TOR by
more than a factor of five. Shown are the average GD values over all gait cycles.
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9.3 Healthy Participants

9.3.1 Normal Walking

Participants were not given specific instructions, but to walk normally within the PerPedes
system. Both the dynamic gaitograms (Figure 9.2) as well as the statistics (Table 9.1)
show that participants tend to start the weight transfer too early (i.e. heel strikes occur
ahead of the machine’s optimal time). One notable exception is test recording G2, where
on average HSR is happening slightly too late (3.4% GC). Gaitograms can expose different
gaits. Sharp corners in the CoP’s trajectory indicate quick weight transfers (e.g. B2).
Round corners show gradual weight transfers (e.g. A3, E1). Dragging the foot during
swing phase leads to gaps between single support stance lines and CoP trajectory (e.g.
A3, C1). Furthermore, test recordings D1 and D2 both show unusual behavior, which is
also clearly visible as outliers in Figure 9.3. Both recordings are examined separately in
Section 9.4.5 and Section 9.4.7.

Step Length Variability

Table 9.1 shows that the standard deviation of both SLL and SLR can be remarkably
large. In the following, it is highlighted why this variability in step length occurred within
the recorded test data.

Step length variability is analyzed with the coefficient of variation (CV). It is defined
as the ratio between the standard deviation to the (absolute value of the) mean, often
expressed as a percentage:

CV = 100% · std
|mean| (9.2)

Table 9.2 lists the CV for the left and right step lengths, as well as the stride length. It
can be observed that the CV values are large, especially in comparison with the literature.
Collins and Kuo [CK13] report a CV for step lengths during overground walking of 2.0%.
Sekiya et al. [SNIF97] determined mean step lengths and mean standard deviation of
step lengths over all participants for different walking speeds. The CV for the step length
can be extracted from their data and shows a minimum of 2.5% at the subjects’ preferred
walking speed and a maximum of 7.2% during the ”slowest walking“ test scenario.

Generally speaking, the CV is larger, the closer the mean value is to zero (and it is
undefined at zero). Therefore, the smaller the subject’s achieved mean step length is, the
smaller the respective CV can become. Additionally, the CV depends on the standard
deviation. As mentioned before, the participants’ heel strikes generally occur too early in
comparison to the optimal time given by the machine’s movements. The step length is
solely dependent on the timing of the corresponding heel strike (Section 7.1). An earlier
heel strike leads to a shorter step length and in turn leads to a higher CV. Furthermore,
an earlier heel strike typically occurs during a time when the pressure plates are still
moving. This means that small variations in the timing of the heel strike across multiple
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gait cycles can lead to a large variation in the pressure plate’s position and therefore to a
large standard deviation in the resulting step length.

Test recording B2 is selected as a demonstrating example. The HSL is timed well (THSL
in Table 9.1) with a low standard deviation of 4% GC. Nonetheless, the SLL’s standard
deviation is 149 mm. This, in relation to the already small SLL (mean: 161 mm), caused
by the very early HSL (mean: −17.1% GC), leads to a large CVSLL of 92.6% (Table 9.2).
Figure 9.4 shows the graphical analysis of test recording B2. Standard algorithms agree on
the location of the gait events. This can be seen with the low average gait discrepancy of
GDavg = 7% GC as well as visually in Figure 9.4a. The GRF visualization in Figure 9.4b
shows occurring negative forces, which indicate that the feet are pulling on the foot
straps. The gait events are rather ordinarily located at or near the GRF’s zero crossings.
However, it can also be seen that the left heel strikes are clustered and occur too early
between −25% GC and −10% GC before the optimal timing. This corresponds to the
time when the pressure plate of the striking foot is in full motion. The plate is in full
motion around −20% GC before the machine’s heel strike event. In Figure 4.4, this
relates to the inflection point at 80% GC for the left pressure plate’s position and to the
inflection point at 30% GC for the right pressure plate. These inflection points represent
the maxima of the respective pressure plate’s velocity function (i.e. the first derivative of
the pressure plate’s position).

From a technical point of view, the large variability in step length is plausible and can
be explained with the heel strikes occurring too early. Nonetheless, the reasons for this
early timing are speculative. Our assumption is that the participants started transferring
their weight earlier because of the machine settings used during the tests. Recordings
have been performed with a cadence of 40 steps per minute and a machine’s step length
of 600 mm. This corresponds to a slow walking speed of just 0.4 m/s, or equivalently
1.44 km/h. Collins and Kuo [CK13] state that there is a tendency in human gait for the
step length to increase with walking speed. This could also mean that the step length
shortens with slower walking speeds. As a consequence of the used settings, while the
striking foot was slowly being moved forward by the machine over a large distance, the
participants might have involuntarily shortened their steps. In turn, this might have lead
to earlier heel strikes, shorter step lengths, and higher variability.
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(a) A1 (b) A2 (c) A3 (d) A4

(e) B1 (f) B2 (g) C1 (h) C2

(i) D1 (j) D2 (k) E1 (l) E2

(m) F1 (n) G1 (o) G2 (p) G3

Figure 9.2: [Screenshots] Normal (active) walking. Dynamic gaitograms.
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ID Gait SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

A1 301 ± 92 418 ± 68 −13.1 ± 3 −9.1 ± 3 −2.9 ± 4 −6.8 ± 3 −8.0 ± 7 15

A2 205 ± 81 396 ± 55 −16.1 ± 2 −10.0 ± 2 −2.2 ± 4 −7.2 ± 3 −13.8 ± 6 13

A3 292 ± 115 325 ± 78 −13.2 ± 4 −12.4 ± 3 0.9 ± 4 1.9 ± 3 −3.7 ± 9 35

A4 262 ± 74 273 ± 68 −14.4 ± 2 −14.2 ± 3 −0.3 ± 3 1.0 ± 3 1.6 ± 4 31

B1 121 ± 227 421 ± 84 −18.0 ± 7 −8.6 ± 4 −5.0 ± 5 −16.6 ± 6 −19.6 ± 7 10

B2 161 ± 149 364 ± 61 −17.1 ± 4 −11.3 ± 2 −8.4 ± 2 −17.4 ± 4 −11.9 ± 4 7

C1 466 ± 118 518 ± 69 −6.0 ± 5 −3.1 ± 4 1.3 ± 3 −0.3 ± 6 −11.5 ± 7 17

C2 406 ± 88 458 ± 66 −9.4 ± 3 −7.1 ± 3 −3.7 ± 2 −6.0 ± 2 −1.0 ± 4 18

D1 −398 ± 312 −375 ± 352 −37.3 ± 12 −37.3 ± 20 −28.7 ± 18 −29.8 ± 12 −0.4 ± 11 49

D2 110 ± 362 −32 ± 443 −19.0 ± 15 −22.0 ± 22 −13.5 ± 19 −12.1 ± 17 −10.8 ± 18 33

E1 437 ± 29 492 ± 49 −8.4 ± 1 −5.1 ± 3 7.2 ± 2 5.0 ± 3 −3.4 ± 4 33

E2 456 ± 42 470 ± 55 −7.4 ± 2 −6.4 ± 3 6.3 ± 1 7.7 ± 2 0.4 ± 4 34

F1 268 ± 113 226 ± 165 −13.7 ± 4 −15.0 ± 5 −4.5 ± 4 −5.0 ± 3 7.3 ± 9 25

G1 435 ± 112 477 ± 95 −7.5 ± 5 −5.1 ± 6 4.2 ± 6 3.7 ± 4 −7.4 ± 7 22

G2 536 ± 57 573 ± 13 −1.2 ± 5 3.4 ± 3 8.6 ± 3 6.4 ± 3 −9.9 ± 6 16

G3 467 ± 52 544 ± 28 −5.8 ± 3 −0.5 ± 3 8.2 ± 3 6.3 ± 3 −4.9 ± 5 42

Table 9.1: Normal (active) walking. Statistical data (1). Step lengths SLL and SLR,
gait event timings T , gait cycle force difference (i.e. balance) Dtotal, and average gait
discrepancy GDavg. Balance highlighted if |Dtotal| ≥ 10%. 111
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ID SLL CVSLL SLR CVSLR Stride CVStride VarAP VarML
(mm) (%) (mm) (%) (mm) (%) (mm) (mm)

A1 301 ± 92 30.5 418 ± 68 16.3 719 ± 130 18.1 13.6 5.1
A2 205 ± 81 39.4 396 ± 55 13.9 601 ± 105 17.4 11.5 5.4
A3 292 ± 115 39.3 325 ± 78 24.0 617 ± 128 20.8 14.3 9.0
A4 262 ± 74 28.4 273 ± 68 25.1 534 ± 104 19.4 10.7 4.3
B1 121 ± 227 187.9 421 ± 84 19.9 542 ± 284 52.5 25.2 8.9
B2 161 ± 149 92.6 364 ± 61 16.8 525 ± 195 37.1 8.9 6.4
C1 466 ± 118 25.2 518 ± 69 13.3 983 ± 166 16.8 17.8 8.0
C2 406 ± 88 21.7 458 ± 66 14.4 864 ± 120 13.9 8.7 3.9
D1 −398 ± 312 78.3 −375 ± 352 94.0 −773 ± 619 80.0 48.1 20.8
D2 110 ± 362 328.7 −32 ± 443 1378.5 78 ± 731 935.2 41.9 18.4
E1 437 ± 29 6.7 492 ± 49 9.9 930 ± 50 5.4 7.7 5.2
E2 456 ± 42 9.1 470 ± 55 11.7 927 ± 69 7.4 10.1 4.8
F1 268 ± 113 42.1 226 ± 165 72.9 494 ± 246 49.7 19.6 8.0
G1 435 ± 112 25.8 477 ± 95 19.9 913 ± 198 21.7 18.6 8.4
G2 536 ± 57 10.7 573 ± 13 2.3 1109 ± 59 5.3 9.6 6.6
G3 467 ± 52 11.2 544 ± 28 5.1 1011 ± 66 6.5 12.3 4.5

Table 9.2: Normal (active) walking. Statistical data (2). Mean ± standard deviation
for step length left SLL, step length right SLR, and stride length Stride. Coefficient of
variation for SLL CVSLL, for SLR CVSLL, and for the stride length CVStride. Coefficients
of variation above 40% are highlighted in red. Variability in AP direction is given by
VarAP and in ML direction by VarML.
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Figure 9.3: Normal (active) walking. Variability of the intersection point in AP direction
plotted against the variability in ML direction. A linear correlation between both vari-
abilities exists. Regression line in a least squares sense shown in blue. The corresponding
data is listed in Table 9.2.
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9.3. Healthy Participants

(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.4: [Screenshots] Normal (active) walking. Test recording B2.
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9. Results

9.3.2 Walking on the Left

Participants were instructed to only actively walk on the left side. Since instructions
were up for interpretation, participants showed different behavior. Dynamic gaitograms
are given in Figure 9.5 and corresponding statistics in Table 9.3. The results ranged from
avoiding contact (C4, D3, D4) to reducing weight on the right side. In general, test data
shows that the right step length is larger than the left step length (Table 9.3). Noteworthy
exceptions are test recordings D3 and D4 which additionally show exceptionally high
variance readings. This discrepancy in the step length can be explained by examining
the gait event timings. Generally speaking, weight transfers to the left occur as early as
possible, in order to avoid putting weight on the right side. Simultaneously, a weight
transfer to the right occurs around the time it becomes inevitable, i.e. the time when the
right pressure plate is most frontal. Weight is then transferred back to the left at the
next appropriate moment. Additionally, as expected, we observe that the force difference
Dtotal, averaged over all gait cycles, consistently shows more applied force on the left side
for all test recordings.
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9.3. Healthy Participants

(a) A5 (b) A6 (c) A7 (d) A8

(e) B3 (f) B4 (g) C3 (h) C4

(i) D3 (j) D4 (k) E3 (l) E4

(m) F2 (n) G4 (o) G5 (p) G6

Figure 9.5: [Screenshots] Actively walking on the left. Dynamic gaitograms.
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ID Gait SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

A5 −199 ± 259 531 ± 48 −26.9 ± 8 −1.6 ± 5 1.6 ± 4 −21.3 ± 10 −49.4 ± 10 19

A6 28 ± 168 512 ± 49 −20.8 ± 4 −3.9 ± 3 1.1 ± 5 −12.5 ± 4 −39.0 ± 7 16

A7 153 ± 83 353 ± 66 −17.8 ± 2 −11.4 ± 3 1.6 ± 3 −0.1 ± 3 −19.3 ± 8 38

A8 120 ± 71 421 ± 51 −18.7 ± 2 −8.9 ± 2 0.6 ± 4 −7.4 ± 2 −34.4 ± 6 24

B3 20 ± 209 568 ± 14 −20.9 ± 6 0.9 ± 2 −0.9 ± 4 −23.7 ± 3 −39.5 ± 4 8

B4 −173 ± 156 569 ± 18 −25.8 ± 4 1.6 ± 2 −3.4 ± 4 −24.3 ± 2 −41.8 ± 4 11

C3 245 ± 129 536 ± 24 −14.9 ± 4 −2.4 ± 2 4.6 ± 5 −7.0 ± 3 −38.5 ± 6 18

C4 181 ± 164 534 ± 21 −16.7 ± 5 −2.7 ± 2 0.9 ± 5 −8.8 ± 4 −47.7 ± 4 19

D3 417 ± 235 389 ± 368 −4.7 ± 11 −3.4 ± 15 0.0 ± 14 −5.4 ± 10 −65.9 ± 9 20

D4 448 ± 221 197 ± 268 −6.6 ± 8 9.4 ± 20 10.5 ± 18 −7.8 ± 2 −72.1 ± 8 21

E3 262 ± 99 519 ± 28 −14.6 ± 3 −3.7 ± 2 7.7 ± 4 −7.9 ± 2 −41.4 ± 5 26

E4 219 ± 75 524 ± 20 −15.9 ± 2 −3.4 ± 2 7.3 ± 3 −9.0 ± 1 −42.9 ± 4 25

F2 314 ± 104 488 ± 64 −12.2 ± 4 −4.5 ± 4 6.6 ± 4 −0.5 ± 3 −21.5 ± 7 30

G4 22 ± 240 552 ± 45 −20.9 ± 6 2.9 ± 5 1.4 ± 5 −20.9 ± 11 −45.8 ± 5 11

G5 −90 ± 238 525 ± 131 −23.8 ± 6 7.7 ± 7 6.3 ± 7 −26.5 ± 10 −49.0 ± 5 11

G6 284 ± 91 508 ± 33 −13.3 ± 3 −3.9 ± 2 3.8 ± 4 −3.8 ± 2 −34.1 ± 4 22

Table 9.3: Actively walking on the left. Statistical data. Step lengths SLL and SLR,
gait event timings T , gait cycle force difference (i.e. balance) Dtotal, and average gait
discrepancy GDavg. Balance highlighted if |Dtotal| ≥ 10%.116



9.3. Healthy Participants

9.3.3 Walking on the Right

Walking on the right produces analogous data to walking on the left side. Dynamic
gaitograms are given in Figure 9.6 and corresponding statistics in Table 9.4. The step
length on the left is generally larger than on the right, except for test recordings B5, B6, D6.
Dtotal shows more applied force on the right side for all test recordings.

(a) A9 (b) A10 (c) A11 (d) A12

(e) B5 (f) B6 (g) C5 (h) C6

(i) D5 (j) D6 (k) E5 (l) E6

(m) F3 (n) G7 (o) G8 (p) G9

Figure 9.6: [Screenshots] Actively walking on the right. Dynamic gaitograms.
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ID Gait SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

A9 411 ± 78 239 ± 177 −9.1 ± 4 −15.0 ± 5 −12.7 ± 5 −3.6 ± 6 25.5 ± 10 11

A10 348 ± 85 229 ± 133 −11.6 ± 3 −15.6 ± 4 −7.7 ± 4 −6.4 ± 5 20.2 ± 12 10

A11 450 ± 77 137 ± 78 −7.1 ± 4 −18.2 ± 2 −5.9 ± 2 2.4 ± 5 33.9 ± 9 27

A12 468 ± 69 48 ± 196 −6.4 ± 3 −20.8 ± 6 −6.8 ± 2 1.4 ± 5 38.9 ± 7 33

B5 450 ± 46 520 ± 33 −7.8 ± 2 −3.9 ± 2 −11.2 ± 2 −12.1 ± 2 21.9 ± 4 5

B6 431 ± 54 486 ± 31 −8.7 ± 2 −6.2 ± 2 −13.8 ± 2 −12.6 ± 2 22.4 ± 5 5

C5 528 ± 22 451 ± 48 −3.2 ± 2 −7.7 ± 2 −2.0 ± 2 4.7 ± 3 24.2 ± 4 14

C6 522 ± 43 284 ± 125 −3.5 ± 3 −13.7 ± 4 −4.9 ± 1 4.4 ± 5 34.5 ± 7 18

D5 456 ± 233 272 ± 364 4.5 ± 15 11.7 ± 17 12.5 ± 19 9.8 ± 16 60.5 ± 5 25

D6 341 ± 273 429 ± 287 −0.3 ± 16 −6.2 ± 11 −6.7 ± 10 −1.2 ± 15 61.0 ± 11 24

E5 500 ± 25 138 ± 177 −5.2 ± 2 −17.8 ± 5 −5.6 ± 5 3.5 ± 5 39.5 ± 7 30

E6 506 ± 27 354 ± 79 −4.8 ± 2 −11.5 ± 3 −5.5 ± 2 2.4 ± 4 33.7 ± 3 22

F3 427 ± 65 51 ± 232 −7.9 ± 3 −19.9 ± 7 −7.6 ± 6 0.7 ± 3 34.0 ± 6 34

G7 465 ± 39 405 ± 45 −7.2 ± 2 −9.7 ± 2 −3.1 ± 2 −1.2 ± 3 28.4 ± 5 18

G8 558 ± 21 432 ± 45 0.0 ± 3 −8.6 ± 2 −2.7 ± 3 10.9 ± 4 36.8 ± 6 20

G9 463 ± 46 387 ± 110 −6.2 ± 2 −9.8 ± 3 −2.6 ± 2 1.9 ± 3 29.9 ± 5 26

Table 9.4: Actively walking on the right. Statistical data. Step lengths SLL and SLR,
gait event timings T , gait cycle force difference (i.e. balance) Dtotal, and average gait
discrepancy GDavg. Balance highlighted if |Dtotal| ≥ 10%.
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9.4 Noteworthy Case Studies

9.4.1 Multiple Sclerosis Participant

The only non-healthy participant with MS (EDSS score of 4.0) shows signs of monoparesis
in the left leg with a weakness in dorsiflexion leading to foot drop. As we have established
in Section 2.6, literature suggests that hemiplegic stroke patients show gait asymmetry,
leading to a longer step length, longer swing phase, and shorter stance phase with the
paretic leg. Although we could not identify studies regarding MS patients, this gait
asymmetry might also hold for monoparesis in general. Statistics are summarized in
Table 9.5, while visualizations can be found in Figure 9.7.

In accordance with the aforementioned studies, the examination of the recorded test data
shows the following distinctive features. Step length on the paretic (left) side is larger
than on the nonparetic side (489 mm vs. 454 mm) with similar variances on both sides.
Furthermore, swing time (Tswing,L vs. Tswing,R) is longer, while stance time (Tstance,L vs.
Tstance,R) is shorter for the paretic side. Comparing gait event timings, one can observe
that the average length of double support when transferring weight from left to right
(i.e. HSR → TOL) is 6.8 + 10 − 1.2 = 15.6% GC1, while the weight transfer to the
paretic leg (i.e. HSL → TOR) lasts 4.3 + 10 + 5.4 = 19.7% GC. In other words, the
weight transfer to the paretic leg starts later and takes longer than to the contralateral
side. The nonparetic leg exerts more force during both stance (Dstance) and swing phase
(Dswing). Furthermore, since HSR occurs earlier than HSL, the force ratio in the swing
phase (Rswing,R) for the nonparetic leg is also larger than for the paretic side.

The GRF visualization (Figure 9.7b) shows more variance in the amplitude on both sides
during the left stance phase (i.e. between HSL and TOL) in contrast to the right stance
phase. This suggests that forces can be controlled more precisely during the nonparetic
leg’s stance phase. In addition to the statistical parameters, one can observe in both
dynamic gaitograms (Figure 9.7c) that the variance of the CoP’s trajectory is higher
on the paretic side. Furthermore, the static gaitogram shows that utilization of the left
foot on average (mean trajectory of the CoP) starts more frontal than on the right. This
could be an indication of the subject’s foot drop, leading to initial contacts located at
the middle of the foot rather than the heel.

16.8 + 10 − 1.2 = 15.6% GC: 6.8% GC before the machine’s HSR event, 10% GC is the machine’s
double support phase between HSR and TOL, and 1.2% GC before the machine’s TOL event.
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9. Results

SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

489 ± 61 454 ± 69 −4.3 ± 3 −6.8 ± 3 −1.2 ± 2 5.4 ± 5 11.8 ± 7 15

Tswing,L Tswing,R Tstance,L Tstance,R Dswing Dstance Rswing,L Rswing,R

(s) (s) (s) (s) (%) (%) (%) (%)

1.1 ± 0.1 0.8 ± 0.2 1.9 ± 0.1 2.2 ± 0.2 6.6 ± 4.4 15.5 ± 9.2 2.7 7.3

Table 9.5: Participant with MS. Statistical data for test recording H1. Step lengths SLL
and SLR, gait event timings THSL, THSR, TTOL, TTOR, average gait discrepancy GDavg,
swing times Tswing, stance times Tstance, force difference during swing phase Dswing, stance
phase Dstance and the whole gait cycle Dtotal, as well as force ratios during swing phase
Rswing.
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9.4. Noteworthy Case Studies

(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.7: [Screenshots] Case study - participant with MS. Test recording H1.
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9.4.2 Walking Backwards

Walking backwards was done with a predefined machine’s step length of 460 mm, a
cadence of 30 steps per minute, and a sampling rate of 50 Hz. In total, 18 gait cycles
have been recorded.

As we have established in Section 6.2, we would expect an event offset of −43% GC to the
machine’s gait event for an optimal backwards movement with −100% step length. The
statistics in Table 9.6 show that both HSL and HSR occur around this expected offset,
while the TO events occur around 5% GC too late. The timings also show that weight
shifts to the left (HSL→ TOR) happen with less variance than vice versa (HSR→ TOL).
This can also be extracted from Figure 9.8b, with HSL and TOR events being more
clustered than HSR and TOL events. The GRF curves also show less variance around
HSL and TOR than with the other events. Figure 9.8a also shows what appears to be a
behavioral change in HSR and TOL, beginning with gait cycle 11, where both events
occur later than in previous cycles. This contributes to the higher variance observed
in the statistics regarding these events. The average gait discrepancy is rather high
(GDavg = 36% GC), which is to be expected, since walking backwards does not follow a
standard gait pattern.

ID SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

A16 −418 ± 54 −328 ± 111 −43.0 ± 6 −41.4 ± 12 −36.6 ± 14 −37.0 ± 5 7.6 ± 11 36

Table 9.6: Walking backwards. Statistical data. Step lengths SLL and SLR, gait event
timings T , gait cycle force difference (i.e. balance) Dtotal, and average gait discrepancy
GDavg.
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9.4. Noteworthy Case Studies

(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.8: [Screenshots] Case study - participant walking backwards. Test recording A16.
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9.4.3 Testing Patient Instructions

Participant G took part in testing the system’s generated patient instructions (Sec-
tion 8.4.1). The goal of this test has been to trigger an autonomous self-correction of
the participant by providing these instructions. The test recording was then evaluated
if there is a change in the participant’s gait pattern. Unfortunately, only seven gait
cycles were recorded before the instructions were issued, followed by fifteen gait cycles
afterwards.

As can be seen in Figure 9.9, Figure 9.10, and with the statistical results in Table 9.7,
before the instructions were issued, the participant did not fully lift the feet during the
swing phases. This lead to a high swing ratio (Rswing) on both sides. Additionally, gait
events were not timed precisely with the machine’s gait cycle. Heel strikes on both sides
occurred too early, while TOL occurred too late.

Overall, after patient instructions were communicated to the participant, the step length
on each side increased, the swing ratio (amount of force during swing phase) decreased
significantly, the event timings improved, and the gait discrepancy of all events was
cut in half, indicating a more standard gait pattern. The sum over all absolute gait
event timings Ttotal = |THSL|+ |THSR|+ |TTOL|+ |TTOR|) was drastically reduced after
instructions were given (Table 9.7). Ttotal measures the total deviation between subject
and machine. In other words, it reflects how precisely the participant coordinated heel
strike and toe off with the movement of the machine.

gait cycle SLL SLR Rswing,L Rswing,R Ttotal GDavg
count (mm) (mm) (%) (%) (% GC) (% GC)

Before 7 474 ± 38 518 ± 31 9.6 ± 3.2 11.6 ± 2.1 13.1 20
After 15 508 ± 59 539 ± 29 1.1 ± 1.4 2.2 ± 1.3 4.0 10

Table 9.7: Participant receives patient instructions. Statistical data. Step lengths SLL
and SLR, swing ratios Rswing, average gait discrepancy GDavg, and Ttotal as the sum over
all absolute gait event timings.
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9.4. Noteworthy Case Studies

Dynamic Dynamic & events

Static Static & events

(a) Gaitogram visualizations, before instructions

Dynamic Dynamic & events

Static Static & events

(b) Gaitogram visualizations, after instructions

Figure 9.9: [Screenshots] Case study - participant receiving patient instructions (1). Test
recording G10.
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9. Results

(a) Gait event consistency graph, before and after instructions

(b) GRF event visualization, before instructions

(c) GRF event visualization, after instructions

Figure 9.10: [Screenshots with annotations] Case study - participant receiving patient
instructions (2). Test recording G10.

9.4.4 Timing - Smallest Variance

Test recording E2 exhibited the smallest sum of standard deviations in gait event
timings (THSL, THSR, TTOL, TTOR). In other words, the participant was able to perform
weight transfers across all gait cycles uniformly and most precisely among all candidates.
However, this does not mean that the participant showed the best synchronization with
the machine’s movement. This would be so, if the sum of all absolute event timings
Ttotal is minimal. Figure 9.11 shows little variance, both in the GRF curves as well as
the CoP’s trajectories. The participant was able to repeat the same movements with
the same amount of force over multiple gait cycles. The dynamic gaitogram shows heel
strikes occur too early, while TO events occur too late. This is also backed up by the
test recording’s statistics (Table 9.1). Gait discrepancy is high, especially for heel strike
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events. This is caused by the initial dragging of each foot prior to the start of each weight
transfer (Figure 9.11b, compare with Figure 6.8a), which diverges from a standard gait
pattern.

9.4.5 Timing - Largest Variance

The largest sum of standard deviations in gait event timings was observed with test
recording D2. The participant showed highly unusual and inconsistent gait patterns.
Variance in all determined parameters (e.g. timing, symmetry) is exceptionally high
(compare with Table 9.1). Overall, analysis of this test recording is inconclusive - it
is unclear why the participant showed this behavior. Another test recording D1 with
the same participant (Section 9.4.7) showed signs of walking backwards. An inquiry of
the participant did not yield any insights, since the participant was not aware of any
abnormal behavior during training.

9.4.6 Smallest Gait Discrepancy

Test recording B5 exhibited the smallest average gait discrepancy. In order words, it
shows the best agreement among all standard gait detection algorithms. Surprisingly, B5
shows the smallest GDavg of 5% GC although the gait is asymmetric, since the objective
was to walk actively on the right side only. As can be appreciated in Figure 9.13, the gait
events are located in the corners of both the static and the dynamic gaitogram, therefore
fulfilling standard event criteria. Statistics are shown in Table 9.4.

9.4.7 Largest Gait Discrepancy

The largest average gait discrepancy is given in test recording D1. According to the
statistical data (Table 9.1), the participant was walking backwards, while also showing
high variances in all parameters. Figure 9.14a shows consistent timings in the gait events
in the beginning, but a change in the participant’s behavior, starting around gait cycle
40. The gait changes from backwards movement to standard forward movement over the
course of ten gait cycles. The large average gait discrepancy (GDavg = 49% GC) is not
surprising, since walking backwards does not follow standard gait definitions. Overall
this test recording is especially challenging for our GED algorithm, because of spurious
and non-existing WTPs, indicating non-relevant weight transfers.
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9. Results

(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.11: [Screenshots] Case study - smallest variance in timing. Test recording E2
shows the smallest sum of standard deviations in gait event timings.128
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(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.12: [Screenshots] Case study - largest variance in timing. Test recording D2
shows the largest sum of standard deviations in gait event timings. 129



9. Results

(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.13: [Screenshots] Case study - smallest GDavg. Test recording B5 exhibits the
smallest average gait discrepancy.130
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(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.14: [Screenshots] Case study - largest GDavg. Test recording D1 exhibits the
largest average gait discrepancy. 131
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9.4.8 Passive Walking

We selected two test recordings regarding passive walking to demonstrate that our GED
algorithm can also handle severe cases with minimal activity. The first recording E8
(Figure 9.15) shows minimal contact with the force plates while around 90% of the
participant’s body weight is being carried by the support system. The second recording
B7 (Figure 9.16), on average, actually has more than 100% of the body weight carried
by the support system, since the participant is additionally pulling on the foot straps.
Peaks in negative GRF reach up to −50% body weight. Weight transfers are detected
during times when left and right GRFs are both negative. Even under these extreme
conditions, we can observe periodicity in the GRF visualizations and consistent GED in
both recordings. However, it is unclear under these circumstances whether or not the
subject’s movements are measured or if the machine’s periodic movement dominates the
results.

ID Gait SLL SLR THSL THSR TTOL TTOR Dtotal GDavg
(mm) (mm) (% GC) (% GC) (% GC) (% GC) (%) (% GC)

E8 270 ± 115 274 ± 99 −14.3 ± 4 −14.1 ± 3 −3.8 ± 2 −10.4 ± 2 −9.1 ± 5 18

B7 −397 ± 83 508 ± 33 −32.6 ± 3 −4.8 ± 2 −6.1 ± 3 −25.1 ± 3 −19.5 ± 7 24

Table 9.8: Passive walking. Statistical data. Step lengths SLL and SLR, gait event
timings T , gait cycle force difference (i.e. balance) Dtotal, and average gait discrepancy
GDavg. Balance highlighted if |Dtotal| ≥ 10%.
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(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.15: [Screenshots] Case study - passive walking (1). Test recording E8.
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(a) Gait event consistency graph

(b) GRF event visualization

Dynamic Dynamic & events

Static Static & events

(c) Gaitogram visualizations

Figure 9.16: [Screenshots] Case study - passive walking (2). Test recording B7.
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CHAPTER 10
Conclusion

10.1 Summary
We present a novel GED algorithm in the context of a new robotic gait rehabilitation
device, i.e. the PerPedes system. Furthermore, we demonstrate that standard GED
algorithms will likely fail with PerPedes, since initial and last contact with the ground
are not considered meaningful anymore. With our new GED algorithm, it is possible to
robustly identify gait events, even under severe circumstances, like minimal gait activity,
dragging the feet, or walking backwards. The algorithm is designed in such a way that
it could potentially be used outside the PerPedes ecosystem, with other force-based
systems. It might be applicable in the analysis of distorted gait patterns or certain motor
impairments, observed in patients with hemiplegia, Multiple Sclerosis, or Parkison’s
disease.

Our developed software provides standard visualizations used in gait analysis. The
vertical GRF visualization is further improved to highlight gait asymmetries with the
introduction of a synchronized (left/right) view and a difference plot. The gaitogram
has been extended with the visualization of stance lines for the use in PerPedes and
provides a multitude of information regarding timing, weight transfers, and symmetry.
During training, the physiotherapist is presented with easy to grasp information about
the patient’s performance. The system automatically generates possible instructions to
improve the patient’s gait and we have demonstrated its applicability to correct timing,
lifting, and symmetry during therapy.

Furthermore, the system collects statistics during each therapy session. These values
can be used to analyze the patient’s current performance and overall therapy progress.
Additionally, normalized measures allow inter-patient comparison for medical experts.
This thesis gives an overview of commonly used spatiotemporal measures. Special
attention has been paid to determine and analyze symmetry. In the context of the
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PerPedes system, new measures have been developed. These are used for the patient
instructions and the balance indicator. The results show that the balance of the patient
(left/right leaning) can be reliably identified (via Dtotal).

10.2 Discussion
This work presents the first scientific evaluation of the PerPedes system, but is by no
means complete. Although we analyzed 72 test recordings and approximately 3600
gait cycles, only eight participants were involved. The proposed target group of stroke
survivors was not represented in the dataset. Furthermore, test data was recorded with the
same machine settings (cadence, step length, sampling rate) with a few exceptions. The
sample size is insufficient, healthy participants are not representative for gait disabilities
and different machine settings (e.g. the sampling rate) might influence the outcome of
the GED.

The GED has been performed after manually annotating representative test data samples.
The gait patterns recorded in PerPedes can be vastly different from the ones reported in
the literature. There was no gold standard available to identify the gait events. Since
manual annotation was done by only one investigator, the identified events could be
inherently biased. But, as Mansfield and Lyons [ML03] state:

“The concept of the precise detection of heel contact events is somewhat
misleading. The transitions between the phases of the gait cycle are gradual
and very often two different and equally experienced investigators may disagree
on the exact moment of, for example, heel contact based on video recordings.”

Because of these circumstances, we decided to introduce the gait discrepancy metric.
Test data has shown that our GED algorithm agrees on the location of the events
with comparative algorithms, if the gait follows a standard pattern. A standard gait
demonstrates the actual lifting of the feet, quick weight transfers, and the pressure moving
across each foot from heel to toe. In such cases, we can indeed see that our algorithm
finds the gait events, expressed by a small GDavg value. In case this gait discrepancy
is large, i.e. the comparative algorithms do not agree on a specific location, results
show that our algorithm’s detection of gait events is consistent in time for test data
with small variances in movement. Temporal consistency is not enforced between gait
cycles. Therefore, if the same gait event is found at the same relative time in multiple
adjacent gait cycles, one can assume that there is a significance to this specific point.
The pressure plates’ movement does influence the GED, since we analyze the velocity
of the CoP’s trajectories. However, we did not find a clear distortion caused by this
movement. This is likely because the start and end of a weight transfer is categorized
by a quick movement of the CoP, basically eliminating the influence of pressure plate
movement. With increased walking speeds, the plates move quicker, but the weight
transfers must happen proportionally even faster, suppressing the influence of the plate
movement accordingly.
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As an alternative gait event definition, one could use the median event among all possible
candidates. We decided against this, because of three reasons. First, the median event
can be driven to a wrong position of occurrence, depending on the used event definitions,
introducing a bias. Second, it increases complexity of the detection, making it harder to
reason about why an event is found at a specific location. Third, there is no reason to
assume that the median event is correct.

10.3 Future Work

10.3.1 Gait Event Detection

The proposed GED algorithm is used to identify events after a machine’s gait cycle is
completed. This is insufficient for real-time GED. In order to allow prompt identification
of heel strikes, one could search for the event as soon as a WTP is detected. Since a WTP
does not necessarily exist or might not identify a weight transfer in non-standard gait
patterns, the heel strike might be misidentified. Toe off events could be found as soon
as negative forces are detected or within a specific time-window after a WTP. Overall,
precision will be traded for speed in the detection.

In order to further validate the algorithm, more test data needs to be collected on the
PerPedes platform. First and foremost, a larger variety in healthy participants’ data
needs to be collected. The parameter space of the machine, especially step length and
cadence, needs to be explored. This means that for each participant, test data with
different machine settings needs to be recorded. Afterwards, this data needs to be
annotated by experienced investigators, marking the gait events. Alternatively, the events
could be detected with a kinematic approach. Using a camera one could identify heel
strikes as the minimal vertical displacement of a heel marker. This approach might
fail, since the foot straps prevent clear movement of the feet. If the gait events can be
successfully identified, they can be used for validation and PerPedes specific statistics can
be inferred, for example the average duration of stance and swing times. The influence
of the machine’s parameters on the subject’s gait variability can be determined. We
would expect that gait variability is at its lowest with each subject’s preferred speed and
step length settings. The generated statistics should be compared to free walking and/or
treadmill walking, as reported in the standard literature. Once this norm data of healthy
participants has been collected and analyzed, groups of participants with certain gait
disabilities can be tested.

Recently, Fukuchi et al. [FFD18] made a public dataset available, including both
kinematic and kinetic data of healthy individuals. The provided (vertical) GRF data
can be used to validate whether or not our GED is suitable for standard gait data not
recorded on the PerPedes device.
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10.3.2 Gait Report

Currently, statistical data is collected and presented in the analysis perspective of the user
interface. In the future, it will be necessary to present statistics over multiple therapy
sessions of the same patient to the medical practitioner. The gaitogram visualization
provides a good overview of the patient’s performance for one therapy session. Addition-
ally, detailed information is available with the statistical measures. Change throughout
the therapies could be visualized for selected measures as a function over time, similar to
the gait event consistency panel.

Wagner et al. [WSH+18] state that a clinician focuses on symmetry measures between
both feet, but also on the deviations from the norm. They developed an interactive user
interface, especially suited for inter-patient comparison. In comparison, our system does
not offer a visual tool to compare different patients yet.

In order to present deviations from the norm without interactivity, one can use a radar
plot as proposed by Mc Ardle et al. [MAGD+19] (Figure 10.1a). This visualization shows
the z-score (positive/negative) for selected spatiotemporal parameters. The z-score is
the distance from the mean, expressed in standard deviations. Alternatively, a simple
line chart can be used instead of a radar plot (Figure 10.1b). There is no significant
advantage of one visualization over the other, therefore the choice is merely a stylistic
one. In order to create any of these plots, one must first collect a fairly large amount of
norm data. In their paper they used a control group size of 29 participants.
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(a) Radar plot. Image taken from Mc Ardle et al. [MAGD+19]
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Figure 10.1: Plots for spatiotemporal parameters. Multivariate data for different groups of impairment (AD, DLB, PDD)
is visualized. For each group/parameter combination, the z-score is shown. Abbreviations: SD, standard deviation; Asy,
asymmetry; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; PDD, Parkinson’s disease dementia; LBD, Lewy
body dementia. * = differences between controls and disease groups, †= differences between AD and LBD.
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APPENDIX A
Relevant Source Code

A.1 Validation of McCamley et al. [MDGM12]
1 % Evaluation of McCamley et al. 2012 − An enhanced estimate of initial

contact and final contact instants of time using lower trunk inertial

sensor data.

2 % Goals:

3 % 1. Verify results

4 % 2. Compare continuous wavelet transformation with Gaussian smoothing

5 %

6 % Necessary functions:

7 % − gaussfilt − https://www.mathworks.com/matlabcentral/fileexchange

/43182−gaussfilt−t−z−sigma
8 % − derivative_cwt − https://www.mathworks.com/matlabcentral/fileexchange

/13948−numerical−differentiation−based−on−wavelet−transforms
9 % − cwt − from Matlab Wavelet toolbox

10
11 % Acceleration data from McCamley et al. Figure 1

12 % (points extracted via http://www.graphreader.com/)

13 x = [−0.019,0.116,0.385,0.655,1.001,1.348,1.502,1.81,2.272,2.58,2.927,...
14 3.389,3.582,3.736,4.005,4.39,4.698,4.852,5.16,5.777,6.123,6.778,...

15 7.664,8.126,8.703,9.166,9.474,9.705,10.167,10.398,10.591,11.014,...

16 11.322,11.515,11.669,11.977,12.246,12.593,12.901,13.286,13.71,...

17 14.288,14.942,15.404,16.021,16.829,16.945,17.214,17.368,17.831,...

18 18.37,18.639,18.909,19.255,19.679,20.103,20.834,21.605,22.259,...

19 22.991,23.376,23.838,24.454,25.071,25.456,25.841,26.226,26.804,...

20 27.227,27.766,28.306,29.384,29.904];

21 y = [6.639,6.286,5.63,5.109,4.824,4.874,4.807,4.269,3.412,2.319,1.227,...
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22 0.37,1.261,3.664,6.084,7.294,5.647,4,2.723,4.739,6.605,7.899,7.042,...

23 6.555,5.277,3.916,3.63,3.496,2.773,1.378,0.924,2.924,4.471,5.244,...

24 5.983,5.176,4.185,3.866,4.504,5.832,7.143,7.933,7.277,5.882,4.689,...

25 3.63,3.563,3.664,3.513,2.067,0.605,2.353,4.857,6.874,5.361,3.109,...

26 5.445,7.866,7.126,5.899,5.697,5.059,3.697,2.824,1.613,0.739,3.294,...

27 6.42,5.261,3.496,5.765,7.933,7.412];

28
29 % Scale x (time axis) to the range [0,2]

30 xscale = 2/max(x);

31 x = (x − min(x)) / (max(x) − min(x)) * 2;

32 % Scale y (acceleration) to the range [−1,1]
33 y = (y − min(y)) / (max(y) − min(y)) * 2 − 1;

34
35 % Uniform spacing and spline interpolation

36 dx = 0.005; % 5 ms signal sampling, since original resolution is 10 ms

37 xx = 0:dx:2;

38 y = spline(x,y,xx);

39 x = xx;

40
41 % Parameters to closely match paper results

42 scaleCWT = 2.5 * xscale / dx; % ~ 33.4

43 sigma = 1.75 * xscale; % ~ 0.12 on [0,2] domain

44
45 % −−−−−−−−−−−−−−−−−−−−−−−−−−−
46 % CALCULATIONS

47 % −−−−−−−−−−−−−−−−−−−−−−−−−−−
48
49 % 1. Gaussian filtering with boundary == mean of signal

50 resFilt = gaussfilt(−2:dx:4,[ones(size(y)) * mean(y) y ones(size(y)) *
mean(y)],sigma);

51 resFilt = resFilt(length(y)+1:end−length(y));
52
53 % 2. Use CWT

54 yInt = cumsum(y) .* dx; % integrate signal

55 resCWT = derivative_cwt(yInt,'gaus1',scaleCWT,dx,1);

56
57 % Calculate the 'jerk' with another differentiation

58 resJerk = derivative_cwt(resCWT,'gaus1',scaleCWT,dx,1);

59 % Scale accordingly to match the paper

60 resJerk = resJerk * 20 * xscale;

61
62 % Find minima/maxima

63 [~,idxMin] = findpeaks(−resCWT);

142



A.1. Validation of McCamley et al. [MDGM12]

64 [~,idxMax] = findpeaks(resJerk);

65
66 % −−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % DISPLAY

68 % −−−−−−−−−−−−−−−−−−−−−−−−−−−
69
70 set(0,'DefaultFigureWindowStyle','docked');

71
72 figure; % first figure

73 hold on;

74 plot(xx,y,'−','LineWidth',1,'Color',[0.8 0.2 0.2]); % signal

75 plot(x,resCWT,'−−','LineWidth',1,'Color',[0.2 0.2 0.8]); % CWT

76 plot(x,resJerk,':k','LineWidth',1); % jerk

77
78 % Plot minima

79 xmin = x(idxMin);

80 plot(xmin,resCWT(idxMin),'ok','MarkerSize',10,'LineWidth',2);

81 for xm = xmin

82 plot([xm xm], [−1.5 1.75], '−−k','LineWidth',1);
83 end

84
85 % Plot maxima

86 xmax = x(idxMax);

87 plot(xmax,resJerk(idxMax),'xk','MarkerSize',12,'LineWidth',2);

88 for xm = xmax

89 plot([xm xm], [−1.5 1.75], ':k','LineWidth',1);

90 end

91
92 ylim([−1.5 1.75]);

93 xlabel('Time [s]', 'FontSize', 12);

94 ylabel('[m/s^2]', 'FontSize', 12);

95
96 %−−−−−−−−−−−−−−−−−−
97
98 figure; % second figure

99 hold on;

100 plot(xx,y,'−','LineWidth',1,'Color',[0.8 0.2 0.2]); % signal

101 plot(x,resCWT,'−−','LineWidth',1,'Color',[0.2 0.2 0.8]); % CWT

102 plot(x,resFilt,':g','LineWidth',1,'Color',[0.2 0.8 0.2]); % filter

103
104 ylim([−1.1 1.1]);

105 xlabel('Time [s]', 'FontSize', 12);

106 ylabel('[m/s^2]', 'FontSize', 12);
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A.2 1D Gaussian and Derivative of Gaussian
1 % Gaussian and Gaussian derivative

2 x = −4:0.01:4;
3 sigma = 1;

4
5 G = 1/(sigma * sqrt(2*pi)) * exp(−x.^2 / (2 * sigma^2));

6 dG2 = −x/sigma .* G;

7
8 figure;

9 hold on;

10 plot(x,G,'LineWidth',2,'Color',[0.8 0.2 0.2]);

11 plot(x,dG2,'−−','LineWidth',2,'Color',[0.2 0.2 0.8]);

12 xlabel('x');

13 ylabel('Amplitude');

A.3 Uniform Filtering
1 function data = filterUniform(data,filtersize)

2 % filter data uniformly with the given filter size

3 if filtersize > 0

4 kernel = ones(1,filtersize)/filtersize;

5 fHalf = round(filtersize / 2);

6
7 data_start = data(1) * ones(1,filtersize);

8 data_end = data(end) * ones(1,filtersize);

9 data_ext = [data_start data data_end];

10 data_ext = filter(kernel,1,data_ext);

11 data_ext = [data_ext(fHalf:end) zeros(1,fHalf−1)];
12
13 data = data_ext(filtersize+1:end−filtersize);
14 end

15 end

A.4 Find the Mediolateral Midpoint
1 function mp = findCopMidpoint(copML,grfDiff,idxMachineWTP)

2 % searches for the nearest midpoint to the machine's WTP

3 % copML ... CoP in ML direction. high values are for the heel

striking limb's side.

4 % grfDiff ... Difference (grf_HS − grf_TO)

144



A.4. Find the Mediolateral Midpoint

5 % idxMachineWTP ... the index of the machine's WTP (halfway between HS and

TO)

6
7 [idxMinmax,isMinimum] = findMinMax(grfDiff,17);

8 if all(isMinimum)

9 % try again without smoothing

10 [idxMinmax,isMinimum] = findMinMax(grfDiff,0);

11 end

12
13 % split according to maxima in grfDiff and look in each section for

midpoints

14 midpoints = [];

15 idxLast = 1;

16 for ii = 1:length(idxMinmax)

17 if isMinimum(ii)

18 continue; % we are interested in maxima

19 end

20 i1 = idxLast;

21 i2 = idxMinmax(ii);

22 idxLast = i2;

23
24 [~,idxMin] = min(copML(i1:i2));

25 idxMin = idxMin + i1 − 1;

26
27 [~,idxMax] = max(copML(idxMin:i2));

28 idxMax = idxMax + idxMin − 1;

29
30 center = (copML(idxMax) + copML(idxMin)) / 2;

31 mp = findCrossing(copML,center,idxMin,idxMax);

32 midpoints = [midpoints mp];

33 end

34
35 if isempty(midpoints)

36 warning('no midpoints');

37 mp = idxMachineWTP;

38 else

39 % take the closest to the machine's WTP

40 dist = abs(idxMachineWTP − midpoints);

41 mp = midpoints(min(dist) == dist);

42 mp = mp(end); % in case there are more than one points with equal

distance

43 end

44
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45 end

46
47 function idxCrossing = findCrossing(data,toCross,iMin,iMax)

48 % finds the crossing 'toCross' between [iMax,iMin]

49 idxCrossing = [];

50 for jj = iMax−1:−1:iMin
51 if data(jj) <= toCross && data(jj+1) >= toCross

52 if abs(data(jj) − toCross) < abs(data(jj+1) − toCross)

53 idxCrossing = jj;

54 else

55 idxCrossing = jj+1;

56 end

57 break;

58 end

59 end

60 end

61
62 function [idxMinmax,isMinimum] = findMinMax(data,filter)

63 % find indices of minima and maxima in data

64 data_smooth = filterUniform(data,filter);

65 minData = min(data_smooth);

66 maxData = max(data_smooth);

67 center = (minData + maxData) / 2;

68
69 idxMin = 1;

70 idxMax = 1;

71 idxMinmax = [];

72 searchMin = −1; % −1 = not started, 0 = search max, 1 = search min

73 for ii = 1:length(data)

74 if data(ii) < data(idxMin)

75 idxMin = ii;

76 end

77 if data(ii) > data(idxMax)

78 idxMax = ii;

79 end

80
81 if data_smooth(ii) <= center && searchMin ~= 1

82 if ii > 1

83 idxMinmax = [idxMinmax idxMax];

84 end

85 idxMin = ii;

86 searchMin = 1;

87 elseif data_smooth(ii) >= center && searchMin ~= 0

146



A.5. Find the Gait Event

88 if ii > 1

89 idxMinmax = [idxMinmax idxMin];

90 end

91 idxMax = ii;

92 searchMin = 0;

93 end

94 end

95
96 if searchMin == 0

97 idxMinmax = [idxMinmax idxMax];

98 elseif searchMin == 1

99 idxMinmax = [idxMinmax idxMin];

100 end

101
102 isMinimum = data(idxMinmax) < center;

103 end

A.5 Find the Gait Event
1 function eventResult = findEvent(midpoint,grf1,grf2,plate1AP,plate2AP)

2 % finds a gait cycle event (HS or TO)

3 % Parameters:

4 % − midpoint ... ML midpoint (or the weight transfer point)

5 % − grf1 ... The increasing GRF

6 % − grf2 ... The other GRF

7 % − plate1AP ... Pressure plate 1. Position in AP direction

8 % − plate2AP ... Pressure plate 2. Position in AP direction

9
10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 % Data preparation

12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13
14 filtersize = 5;

15
16 % −−−−− calculate CoP and velocity (excluding feet)

17 grf1_pos = max(0,grf1);

18 grf2_pos = max(0,grf2);

19 grf_total = grf1_pos + grf2_pos;

20
21 copAP = (plate1AP .* grf1_pos + plate2AP .* grf2_pos) ./ grf_total;

22 copML = ((100) * grf1_pos + (−100) * grf2_pos) ./ grf_total;

23
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24 velAP = [0 diff(copAP)];

25 velML = [0 diff(copML)];

26
27 velCoP = [velAP ; velML];

28 velCoP = sqrt(sum(velCoP .* velCoP,1));

29
30 % −−−−− calculate distance (excluding feet)

31 dx = plate1AP − plate2AP;

32 dy = 200 * ones(size(grf1)); % feet are 200 mm apart

33 distance = sqrt((dx .* dx) + (dy .* dy));

34
35 % −−−−− calculate measures

36 Measure1 = (grf2 − grf1) .* distance;

37 dtMeasure1 = [0 diff(Measure1)];

38
39 g2Rel = 100 * grf2 ./ max(0.1, grf1 + grf2);

40 Measure2 = g2Rel .* distance; % better results with relative GRF

41 dtMeasure2 = [0 diff(Measure2)];

42
43 % −−−−− smoothing

44 dtMeasure2_smooth = filterUniform(dtMeasure2,filtersize);

45 copML_smooth = filterUniform(copML,filtersize);

46 velCoP_smooth = filterUniform(velCoP,filtersize);

47
48 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 % Defining search boundaries

50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51
52 idxFrom = max(1, midpoint−50);
53 idxTo = min(length(grf1), midpoint+50);

54
55 [~,idxMaxCopML] = max(copML(midpoint:idxTo));

56 idxMaxCopML = idxMaxCopML + midpoint − 1;

57
58 [~,idxMinCopML] = min(copML(idxFrom:midpoint));

59 idxMinCopML = idxMinCopML + idxFrom − 1;

60
61 [~,idxMaxGRF] = max(grf1(midpoint:idxTo));

62 idxMaxGRF = idxMaxGRF + midpoint − 1;

63
64 [~,idxMinGRF] = min(grf1(idxFrom:midpoint));

65 idxMinGRF = idxMinGRF + idxFrom − 1;

66
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67 idxFrom = max([idxMinGRF idxMinCopML]);

68 idxTo = min([idxMaxGRF idxMaxCopML]);

69
70 % find (if it exists) grf1 <= 0 (backward search)

71 idxFromGRF = [];

72 for ii = midpoint:−1:idxFrom
73 if grf1(ii) <= 0 && grf2(ii) > 0

74 idxFromGRF = ii;

75 break;

76 end

77 end

78 idxFrom = max([idxFromGRF idxFrom]);

79
80 % find (if it exists) grf2 <= 0 (forward search)

81 idxToGRF = [];

82 for ii = midpoint:idxTo

83 if grf2(ii) <= 0 && grf1(ii) > 0

84 idxToGRF = ii;

85 break;

86 end

87 end

88 idxTo = min([idxToGRF idxTo]);

89
90 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91 % Searching...

92 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93
94 % find local maximum in measure2 (backward search)

95 idxMax2_smooth = max([idxFrom find(dtMeasure2_smooth(idxFrom:midpoint) >=

0,1,'last') + idxFrom − 1]);

96
97 % find local minimum in measure2 (backward search)

98 idxMin2_smooth = max([idxFrom find(dtMeasure2_smooth(idxFrom:

idxMax2_smooth−1) <= 0,1,'last') + idxFrom − 1]);

99
100 % find points in original data:

101 f = max(idxFrom, idxMax2_smooth−(filtersize−1)/2);
102 t = min(midpoint, idxMax2_smooth+(filtersize−1)/2);
103 [~,idxMax2] = max(Measure2(f:t));

104 idxMax2 = idxMax2 + f − 1;

105
106 f = max(idxFrom, idxMin2_smooth−(filtersize−1)/2);
107 [~,idxMin2] = min(Measure2(f:idxMax2));
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108 idxMin2 = idxMin2 + f − 1;

109
110 % find local maximum in measure1 (backward search)

111 idxMax1 = max([idxMin2 find(dtMeasure1(idxMin2:idxMax2) >= 0,1,'last') +

idxMin2 − 1]);

112
113 % find local minimum in velocity

114 idxMinVel_smooth = idxMax1;

115 for ii = idxMinVel_smooth+1:idxTo % forward

116 if velCoP_smooth(ii) > velCoP_smooth(ii−1)
117 idxMinVel_smooth = ii−1;
118 break;

119 end

120 end

121 for ii = idxMinVel_smooth−1:−1:idxMin2 % backward

122 if velCoP_smooth(ii) >= velCoP_smooth(ii+1)

123 idxMinVel_smooth = ii+1;

124 break;

125 end

126 end

127
128 % find minimum in original data

129 f = max(idxMinVel_smooth−(filtersize−1)/2,idxMin2);
130 t = min(idxMinVel_smooth+(filtersize−1)/2,idxTo);
131 [~,idxMinVel] = min(velCoP(f:t));

132 idxMinVel = idxMinVel + f − 1;

133
134 eventResult = idxMinVel;

135
136 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
137 % Event should not be before a major turn in CoP_ML

138 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
139
140 idxFirstGood = idxFrom;

141 down = false;

142 for ii = (midpoint−1):−1:idxFrom
143 if copML_smooth(ii) < copML_smooth(ii+1)

144 down = true;

145 end

146 if down && copML_smooth(ii) > copML_smooth(ii+1)

147 [~,idxFirstGood] = min(copML(ii−1:ii+3));
148 idxFirstGood = idxFirstGood + ii−1 − 1;

149 break;
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150 end

151 end

152
153 eventResult = max(eventResult,idxFirstGood);

154 end
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Glossary

Anterior-posterior (AP) The back (posterior) to front (anterior) axis of a subject.
8, 9, 163

Cadence The rate at which a person walks, expressed in steps per minute. 28, 31, 105,
109, 122, 136, 137

Calcaneal gait A gait disturbance, characterized by walking on the heel, due to paralysis
of the calf muscles, seen following poliomyelitis and in some other neurologic diseases
(Sources: Farlex [Far20], Government of Canada[Pub20]). 53, 83

Contralateral Adjective. Referring to something (e.g. event, body part) on the opposite
side of the body. 6, 11, 36, 53, 61, 72

Dorsiflexion (DF) Dorsiflexion is the movement, which brings the toes closer to the
shin; it reduces the angle between leg and foot. 28, 119, 163

Electroencephalography (EEG) The measurement and recording of electrical activ-
ity in the brain. 2, 163

Electromyography (EMG) The measurement and recording of the electrical activity
of muscles. 2, 163

Foot drop A gait abnormality caused by weakness or disruption in the nerve pathway
between brain and foot. Subjects suffering from foot drop have difficulties lifting
the front of the foot, showing a weakened dorsiflexion. 17, 119

Functional electrical stimulation (FES) The application of small electrical charges
to stimulate muscles. 2, 163

Gait cycle (GC) The sequence of foot contact events during normal walking. One
gait cycle starts with the initial contact of one foot and ends with the next similar
contact of the same foot. 36, 163

Hemiparesis The weakness of one entire half of the body. 92
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Hemiplegia One-sided paralysis. 1, 135, 162

Hemiplegic Adjective. See hemiplegia. 17

Ipsilateral Adjective. Referring to something (e.g. event, body part) on the same side
of the body. 6

Knee flexion Knee flexion is the bending of the knee, bringing the foot towards the
back of the thigh. 6

Loading rate The speed at which forces are applied. The derivative of the GRF. 24

Mediolateral (ML) The side to side axis of a subject. 8, 9, 39, 40, 50, 164

Monoparesis Paresis in one leg. 119

Orthosis The correction of disorders of the limbs or spine by use of braces and other
devices to correct alignment or provide support (Source: Lexico [Lex20]). 15

Paralysis Complete loss or weakness of muscle function in one or more muscles. 1, 162

Plantar flexion (PF) Plantar flexion is the movement in which the foot points down
and away from the leg. 28, 164

Stance phase The stance phase starts with the heel strike and ends with the toe off
event for each foot respectively. It accounts for about 60 % of the whole gait cycle.
5

Step length The distance between one foot’s position of contact with the ground and
the other foot’s previous similar position of contact during gait. For example, the
distance between the positions of the current left heel strike and the previous right
heel strike results in the left foot’s step length. 13, 14, 69, 153

Stride length The distance between two successive similar positions of contact of the
same foot. For example, the distance between two successive positions of the left
heel strike results in the stride length. 13, 14, 69, 108, 112, 153

Swing phase The swing phase starts with the toe off and ends with the heel strike
event for each foot respectively. It accounts for about 40 % of the whole gait cycle.
5

Tibia The shinbone. The frontal bone in the lower leg. 6, 24, 28

Weight transfer point (WTP) The point of equal forces (force equilibrium) between
left and right vertical ground reaction force. (Source: Nolan and Yarossi [NY11]).
9, 164
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Acronyms

AP anterior-posterior. 8, 17, 18, 33, 34, 36, 37, 53–55, 58–60, 65–68, 72, 74, 75, 101,
112, 161

CoM center of mass. 9, 10, 28

CoP center of pressure. 11, 12, 17, 26, 38–40, 43, 44, 46, 50, 53–55, 59–67, 72–74, 78,
84–91, 108, 119, 126, 136, 153, 154

CV coefficient of variation. 108, 109, 112

CWT continuous wavelet transform. 20–24

DF dorsiflexion. 28, 29, 161

DoG derivative of Gaussian. 20–22

EEG electroencephalography. 2, 161

EMG electromyography. 2, 161

FES functional electrical stimulation. 2, 161

FoR frame of reference. 83–85, 90, 91, 154

GC gait cycle. 36–38, 40, 41, 43, 50, 55, 57, 59, 64, 71, 86, 90, 92, 93, 95, 97, 98, 100,
102, 107–109, 111, 116, 118–120, 122, 124, 127, 132, 161

GD gait discrepancy. 71, 72, 106, 107

GED gait event detection. 3, 4, 17, 18, 21, 24, 25, 35, 36, 47, 51, 57, 58, 63–65, 67, 68,
71, 100, 106, 127, 132, 135–137, 153, 154

GRF ground reaction force. 8–11, 17, 18, 24, 25, 27, 36, 38, 41, 43, 45, 48–54, 57, 58,
60, 63–65, 71, 92–95, 109, 113, 119, 121–123, 126, 128–135, 137, 153, 154, 162

HIS hospital information system. 2, 3
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HS heel strike. 8, 11, 13, 16–18, 21–23, 36–38, 40, 47, 50, 53, 54, 57, 58, 61–63, 68–73,
85, 97, 98, 153

HSL heel strike, left. 8, 11, 14, 38, 40, 69, 71, 85, 87, 95, 100–102, 109, 119, 122

HSR heel strike, right. 8, 11, 14, 38, 69, 71, 85, 87, 95, 96, 100–102, 108, 119, 122

IMU inertial measurement unit. 17, 21, 22

ML mediolateral. 8, 28, 33, 36, 38–40, 43, 53, 64, 65, 72, 74, 75, 85, 101, 112, 153, 154,
162

MS multiple sclerosis. 105, 106, 119–121, 155, 157

PF plantar flexion. 28, 29, 162

RLA Rancho Los Amigos. 6–8

SLL step length, left. 13, 14, 70, 108, 109, 111, 112, 116, 118, 120, 122, 124, 132

SLR step length, right. 13, 14, 70, 108, 111, 112, 116, 118, 120, 122, 124, 132

TO toe off. 8, 11, 13, 16, 17, 21–23, 36–38, 40, 47, 51, 57, 58, 61, 67–69, 72, 73, 85, 97,
98, 107, 122, 126

TOL toe off, left. 8, 11, 69, 71, 85, 87, 95–97, 101, 102, 107, 119, 122, 124

TOR toe off, right. 8, 11, 40, 69, 71, 85, 87, 95, 101, 102, 107, 119, 122

WTP weight transfer point. 9, 10, 36, 38–40, 43–48, 50, 51, 127, 137, 153, 162
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